首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3是非齐次线性方程组3个不同的解,证明: (Ⅰ)α1,α2,α3中任何两个解向量均线性无关; (Ⅱ)如果α1,α2,α3线性相关,则α1-α2,α1-α3线性相关.
已知α1,α2,α3是非齐次线性方程组3个不同的解,证明: (Ⅰ)α1,α2,α3中任何两个解向量均线性无关; (Ⅱ)如果α1,α2,α3线性相关,则α1-α2,α1-α3线性相关.
admin
2018-06-12
148
问题
已知α
1
,α
2
,α
3
是非齐次线性方程组3个不同的解,证明:
(Ⅰ)α
1
,α
2
,α
3
中任何两个解向量均线性无关;
(Ⅱ)如果α
1
,α
2
,α
3
线性相关,则α
1
-α
2
,α
1
-α
3
线性相关.
选项
答案
(Ⅰ)如果α
1
,α
2
线性相关,不妨设α
2
=kα
1
,那么 Aα
2
=A(kα
1
)=kAα
1
=kb. 又Aα
2
=b,于是k=1,与α
1
,α
2
不同相矛盾. (Ⅱ)如果α
1
,α
2
,α
3
线性相关,则有不全为0的k
1
,k
2
,k
3
使k
1
α
1
+k
2
α
2
+k
3
α
3
=0,那么 (k
1
+k
2
+k
3
)α
1
=k
2
(α
1
-α
2
)+k
3
(α
1
-α
3
). 由于α
1
是非齐次方程组Aχ=b的解,而α
1
-α
2
,α
1
-α
3
是齐次方程组Aχ=0的解,α
1
不能由α
1
-α
2
,α
1
-α
3
线性表出,故必有k
1
+k
2
+k
3
=0,那么 k
2
(α
1
-α
2
)+k
3
(α
1
-α
3
)=0. 此时k
2
,k
3
不全为0(否则亦有k
1
=0,与k
1
,k
2
,k
3
不全为0相矛盾), 故α
1
-α
2
,α
1
-α
3
线性相关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/sUg4777K
0
考研数学一
相关试题推荐
与α1=(1,2,3,-1)T,α2=(0,1,1,2)T,α3=(2,1,3,0)T都正交的单位向量是_______.
已知α1=(1,4,2)T,α2=(2,7,3)T,α3=(0,1,a)T可以表示任意一个3维向量,则a的取值是_______.
已知线性方程组有无穷多解,而A是3阶矩阵,且分别是A关于特征值1,-1,0的三个特征向量,求矩阵A.
已知方程组有解,证明:方程组无解.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3,α4,求线性方程组AX=β的通解.
设a,b均为常数,a>-2,a≠0,求a,b为何值时,使
以y=7e3x+2x为一个特解的三阶常系数齐次线性微分方程是_______
求y"一2y’一e2x=0满足初始条件y(0)=1,y’(0)=1的特解.
设f(x)在x=0的邻域内二阶连续可导,=2,求曲线y=f(x)在点(0,f(0))处的曲率.
设X1,X2,…,X25是取自于正态总体N(μ,9)的样本,其中μ为未知参数,如果对检验问题H0:μ=μ0,H1:μ≠μ0,取检验的拒绝域为W={(X1,X1,…,X25):}其中试决定常数C,使检验的显著性水平为0.05.
随机试题
全面质量管理
行政组织的帕金森现象主要包括()
(2009.10.多选)19世纪70年代后,洋务派兴办的官督商办企业有()
[2005年第110题]以下哪项不是中世纪欧洲城市设计的特点?
项目施工质量工作计划的内容有()。
()行业表现出较强的生产半径和销售区域的特征。
当动物缺乏某激素时,可以通过“饲喂法”或“注射法”对该激素进行人为补充。下列只可通过以上一种方法补充的激素是()。①生长激素②甲状腺激素③胰岛素④性激素
根据《中华人民共和国教育法》的规定,明知校舍或者教育教学设施有危险,而不采取措施,造成人员伤亡或者重大财产损失的,对直接负责的主管人员和其他直接责任人员,依法追究()
DearMr.Cooper,ThankyouforyourMay18orderoffiveT-200printers.Unfortunately,theT-200hasbeendiscontinuedandisn
A—phonebookB—toolsC—calculatorD—messagesavingE—phonesettingF—backlightsettingG—keylock
最新回复
(
0
)