首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重量50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试用中心极限定理说明每辆车最多可装多少箱,才能保障不超载的概率大于0.977(ψ(2)=0.977).
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重量50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试用中心极限定理说明每辆车最多可装多少箱,才能保障不超载的概率大于0.977(ψ(2)=0.977).
admin
2018-09-20
72
问题
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重量50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试用中心极限定理说明每辆车最多可装多少箱,才能保障不超载的概率大于0.977(ψ(2)=0.977).
选项
答案
设X
i
表示“装运的第i箱的重量”,n表示装运箱数.则 EX
i
=50,DX
i
=5
2
=25, 且装运的总重量Y=X
1
+X
2
+…+X
n
,{X
n
}独立同分布, EY=50n,DY=25n. 由列维一林德伯格中心极限定理知Y近似服从N(50n,25n).于是 [*] 故[*],则n<98.01099,即最多可以装98箱.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/qtW4777K
0
考研数学三
相关试题推荐
设X和Y是相互独立的随机变量,其概率密度分别为其中λ>0,μ>0是常数,引入随机变量求E(Z)和D(Z).
投篮测试规则为每人最多投三次,投中为止,且第i次投中得分为(4-i)分,i=1,2,3.若三次均未投中不得分,假设某人投篮测试中投篮的平均次数为1.56次.(Ⅰ)求该人投篮的命中率;(Ⅱ)求该人投篮的平均得分.
假设有10只同种电子元件,其中有2只废品.装配仪器时,从这10只元件中任取一只,如是废品,则扔掉后再重新任取一只;如仍是废品,则扔掉后再任取一只.求在取到正品之前,已取出的废品只数的数学期望和方差.
将一颗骰子连续重复掷4次,以X表示4次掷出的点数之和,则根据切比雪夫不等式,P{10<X<18}≥_________.
已知某零件的横截面是一个圆,对横截面的直径进行测量,其值在区间(1,2)上服从均匀分布,则横截面面积的数学期望为_______,方差为_________.
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=α2+α3=求方程组AX=b的通解.
设随机变量X~N(μ,σ2),Y~U[一π,π],且X,Y相互独立,令Z=X+Y,求fZ(z).
设随机变量X1,X2,X3,X4独立同分布,且X1~(i=1,2,3,4),求X=的概率分布.
设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.求θ的矩估计量;
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn一1=αn,Aαn=0.证明:α1,α2,…,αn线性无关;
随机试题
35周婴儿,出生体重1.0kg,生后3天体温不升,需置暖箱,该暖箱适宜的温度是
(2021年青岛联考)下列教师教学工作的五个基本环节,顺序比较合理的是()①上课,这是教学工作的中心环节②课外辅导,主要有集体和个别辅导两种形式③备课,这是上课前的准备工作,是教好课的前提④学业成绩的检查和评定⑤课外作业的布置和反馈
A、deadlineB、handsomeC、adjustD、sandwichA选项A画线字母读[d]。其他选项画线字母不发音。
肠扭转:左心衰竭导致肺脏:
坐骨切迹宽度小于5.5~6cm时,属于
双方在仲裁过程中对仲裁程序所作的下列何种约定是有效的?()。如果《补充协议》无效,刘某向法院提起诉讼,则:()。
操作风险包括战略风险,但不包括声誉风险和法律风险。()
已知某企业为开发新产品拟投资建设一条生产线,现有甲、乙、丙三个方案可供选择。甲方案的现金净流量为:NCF0=-1000万元,NCF1-7=250万元。乙方案在建设起点用800万元购置不需要安装的固定资产,税法规定残值率为10%,使用年限6年,直线法计提折旧
根据项目A和B的现金流量表。问答下面的问题:(1)计算项目A和项目B的回收期(2)假设必要回报率为5%,请用NPV法则判断,哪个项目可以接受。(深圳大学2013真题)
辩证唯物主义否定观主张否定是
最新回复
(
0
)