首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的概率密度为f(x)=试求: (I)常数C;(Ⅱ)概率(Ⅲ)X的分布函数.
设随机变量X的概率密度为f(x)=试求: (I)常数C;(Ⅱ)概率(Ⅲ)X的分布函数.
admin
2018-11-20
48
问题
设随机变量X的概率密度为f(x)=
试求:
(I)常数C;(Ⅱ)概率
(Ⅲ)X的分布函数.
选项
答案
(I)由1=∫
-∞
+∞
f(x)dx=∫
0
2
4Cxdx=8C[*] (Ⅱ)[*] (Ⅲ)分布函数F(x)=∫
-∞
x
f(t)dt,由于f(x)是分段函数,该积分在不同的区间上被积函数的表达式各不相同,因此积分要分段进行.要注意的是不管x处于哪一个子区间,积分的下限总是“一∞”,积分∫
-∞
x
f(t)dt由(一∞,x)的各个子区间上的积分相加而得. 当x≤0时,F(x)=∫
-∞
x
f(t)dt=∫
-∞
x
0dt=0; 当0<x≤2时,F(x)=∫
-∞
x
f(t)=∫
-∞
0
0dt+[*] 当x>2时,F(x)=∫
-∞
x
f(t)dt=∫
-∞
0
0dt+[*]+∫
2
x
0dt=1, 因此 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/qfW4777K
0
考研数学三
相关试题推荐
设A,B,C,D都是n阶矩阵,r(C4+DB)=n.设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
设X,Y为两个随机变量,P(X≤1,Y≤1)=,P(X≤1)=P(y≤1)=,则P{min(X,Y)≤1)=().
设A,B为n阶矩阵,证明:当P可逆时,Q也可逆.
10件产品中4件为次品,6件为正品,现抽取2件产品.在第一件为正品的情况下,求第二件为次品的概率;
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A一1的特征值并判断A一1是否可对角化.
设a>0,讨论方程aex=x2根的个数.
设u=U(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0确定,其中f,g,h连续可偏导且
差分方程yx+1一的通解是________.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak—1α≠0。证明:向量组α,Aα,…,Ak—1α是线性无关的。
设总体X的概率密度f(x)=其中a是常数,λ>0是未知参数,从总体X中抽取样本X1,X2,…,Xn。求:(Ⅰ)常数a;(Ⅱ)求λ的最大似然估计量。
随机试题
安静状态下的主要产热器官是()
卵泡内膜细胞主要产生
患者,男,32岁。半年来消瘦、多汗、易急躁,3个月来发作性心悸。查体:血压150/70mmHg,心律完全不整,脉率72次/分,心率98次/分,心音强弱不等。除对患者病因治疗外,就心律失常而言,应首选的药物是
2006年5月2日,吴某到某县郊区旅社住宿,拒不出示身份证件,与旅社工作人员争吵并强行住入该旅社。该郊区派出所以扰乱公共秩序为由,决定对吴某处以300元罚款。下列哪些说法是正确的?(2006年卷二第82题)
某盐厂2002年自产固体盐50万吨,销售25万吨,将外购的已税液体盐10万吨加工成固体盐5万吨销售。固体盐的单位税额为25元/吨,液体盐的单位税额为3元/吨。该盐厂2002年应纳资源税为()万元。
某有限责任公司的股东会通过了解散公司的决议,并决定在15日内成立清算组。下列有关该公司清算组的组成中,符合公司法律制度规定的是()。
20世纪80年代以来,人类迎来了第三次信息技术革命,其对教育具有根本性的影响。请问第三次信息技术革命将使教育发生哪些变革?
TheBrowningshavenot______yetandIdoubtwhethertheywillcome.
第1台计算机ENIAC在研制过程中采用了哪位科学家的两点改进意见
ChooseTWOlettersA-E.Writeyouranswersinboxes20and21onyouranswersheet.Thelistbelowgivessomestatementsabouta
最新回复
(
0
)