首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A一1的特征值并判断A一1是否可对角化.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A一1的特征值并判断A一1是否可对角化.
admin
2016-10-24
54
问题
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A
*
)
2
一4E的特征值为0,5,32.求A
一1
的特征值并判断A
一1
是否可对角化.
选项
答案
设A的三个特征值为λ
1
,λ
2
,λ
3
,因为B=(A
*
)
2
一4E的三个特征值为0,5,32,所以(A
*
)
2
的三个特征值为4,9,36,于是A
*
的三个特征值为2,3,6. 又因为|A
*
=36=|A|
3一1
,所以|A|=6. 由[*]=6,得λ
1
=3,λ
2
=2,λ
3
=1, 由于一对逆矩阵的特征值互为倒数,所以A
一1
的特征值为1, [*] 因为A
一1
的特征值都是单值,所以A
一1
可以相似对角化.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/PEH4777K
0
考研数学三
相关试题推荐
求下列向量场的旋度:(1)A={yz2,xz2,xyz);(2)A={x2siny,y2sin(xz),xysin(cosz)}.
以向量a和b为边作平行四边形.试用a与b表示a边上的高向量.
用常数变易法求下列线性微分方程的通解:(1)y〞+y=secx,已知y1(x)=cosx是方程y〞+y=0的一个解;(2)(2x-1)y〞-(2x+1)yˊ+2y=0,已知y1(x)=ex是该方程的一个解;(3)x2y〞-2xyˊ+2y=2x3,已知
设有曲面积分,其中∑为将原点包围在其内部的光滑闭曲面,n=(cosα,cosβ,cosγ)为∑上的动点M处的外法向量,r=|OM|.(1)如果∑1与∑2为满足上述条件的两张曲面,∑1位于∑2的内部,并记在∑1和∑2上的上述积分值分别为I1和I2,证明I1
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:A2.
A是n阶矩阵,且A3=0,则().
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第一行与第二行得到矩阵B,则|BA*|=_________.
随机试题
核能释放的形式有核裂变、核聚变、核衰变等,核能发电属于核裂变。()
阴虚潮热,可出现( )。阳明潮热,可出现( )。
银翘散的功用是麻黄杏仁甘草石膏汤的功用是
下列各项,不属产后发热病因的是
无菌包的有效期一般为()
李某为一境内上市公司员工,每月工资12000元,该公司实行股权激励计划,2012年李某被授予股票期权,授予价4.5元/股,共60000股。按公司股权激励计划的有关规定,李某于2015年3月2日进行第一次行权,行权数量为30000股,该股票当日收盘价12元/
下列自然现象中,说法错误的是:
碳信用又称碳权,指在经过联合国或联合国认可的减排组织认证的条件下,国家或企业以增加能源使用效率、减少污染或减少开发等方式减少碳排放,因此得到可以进入碳交易市场的碳排放计量单位,一个碳信用相当于一吨二氧化碳排放量。某燃煤发电厂去年碳排放额超标,根据上述定义,
新中国实行发展国民经济第一个五年计划的中心环节是()
WhenwilltheCopaAmericainColumbiakick-off?
最新回复
(
0
)