首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求证:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=下有最大值和最小值,且它们是方程k2一(Aa2+Cb2)k+(AC—B2)a2b2=0的根.
求证:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=下有最大值和最小值,且它们是方程k2一(Aa2+Cb2)k+(AC—B2)a2b2=0的根.
admin
2018-11-11
49
问题
求证:f(x,y)=Ax
2
+2Bxy+Cy
2
在约束条件g(x,y)=
下有最大值和最小值,且它们是方程k
2
一(Aa
2
+Cb
2
)k+(AC—B
2
)a
2
b
2
=0的根.
选项
答案
因为f(x,y)在全平面连续,[*]为有界闭区域,故f(x,y)在此约束条件下必有最大值和最小值. 设(x
1
,y
1
),(x
2
,y
2
)分别为最大值点和最小值点,令[*] 则(x
1
,y
1
),(x
2
,y
2
)应满足方程 [*] 记相应乘子为λ
1
,λ
2
,则(x
1
,y
1
,λ
1
)满足[*] 解得λ
1
=Ax
1
2
+2Bx
1
y
1
+Cy
1
2
同理λ
2
=Ax
2
2
+2Bx
2
y
2
+Cy
2
2
. 即λ
1
,λ
2
是f(x,y)在椭圆[*]上的最大值和最小值. 又方程组①和②有非零解,系数行列式为0,即[*] 化简得 λ
2
一(Aa
2
+Cb
2
)λ+(AC—B
2
)a
2
b
2
=0, 所以λ
1
,λ
2
是上述方程(即题目所给方程)的根.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/pxj4777K
0
考研数学二
相关试题推荐
设矩阵其行列式|A|=一1,又A的伴随矩阵A*有一个特征值λ0,A*的属于λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c和λ0的值.
求椭圆x2+4y2=4上一点,使其到直线2x+3y一6=0的距离最短.
求函数z=x4+y4一x2一2xy—y2的极值.
设z=[sin(xy)]xy,求dz.
设一1<x1<0,xn+1=xn2+2xn(n=0,1,2,…).证明数列{xn}的极限存在,并求此极限值.
n阶对称矩阵的全体V对于矩阵的线性运算构成一个维线性空间.给出n阶可逆矩阵P,以A表示V中的任一元素,试证合同变换TA=PTAP,是V中的线性变换.
已知平面上三条不同直线的方程分别为l1:ax+26y+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0,试证这三条直线交于一点的充分必要条件为a+b+c=0.
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间内有且仅有一个实根;(2)记(1)中的实根为xn,证明存在,并求此极限.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
计算下列各题:(Ⅰ)设其中f(t)三阶可导,且f〞(t)≠0,求;(Ⅱ)设的值.
随机试题
TheDefinitionof"Price"Pricesdeterminehowresourcesaretobeused.Theyarealsothemeansbywhichproductsandservi
A、咳嗽、咳痰、咯血、胸痛、呼吸困难B、食欲不振、苍白、黄染、腹胀、便秘、腹泻C、呼吸困难、咳嗽、咳痰、咯血、心悸、水肿D、心悸、气短、水肿、头晕、头痛、苍白、黄染E、尿频、尿急、尿痛、尿量、尿颜色、腹痛、水肿循环系统问诊内
与老年人细胞活力降低无关的因素是
缓控释制剂的体外释放度试验,其中难溶性药物的制剂可选用的方法是
10把钥匙中有3把能打开门,今任取两把,那么能打开门的概率是()。
C公司正在研究一项生产能力扩张计划的可行性,需要对资本成本进行估计。估计资本成本的有关资料如下:(1)公司现有长期负债:面值1000元、票面利率12%、每半年付息的不可赎回债券;该债券还有5年到期,当前市价1051.19元;假设新发行长期债券时采用
一、注意事项1.申论考试,与传统作文考试不同,是对分析驾驭材料的能力与对文字表达能力并重的考试。2.参考时限,阅读资料40分钟,作答110分钟。3.仔细阅读给定的材料,按申论要求依次作答,答案书写在指定位置。二、给定材料1.按照党
下列关于机器零的说法中,正确的是()。
生产关系对生产力的反作用表现在()。
设随机变量(X,Y)~N(0,0;1,4;0).(Ⅰ)若X+Y与X+aY相互独立,求a的值,并求Z=X+aY的概率密度f(z);(Ⅱ)计算D(X2一2Y2).
最新回复
(
0
)