首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a<b,证明不等式 [∫abf(x)g(x)dx]2≤∫abf2(x)dx∫abg2(x)dx.
设a<b,证明不等式 [∫abf(x)g(x)dx]2≤∫abf2(x)dx∫abg2(x)dx.
admin
2019-02-26
63
问题
设a<b,证明不等式
[∫
a
b
f(x)g(x)dx]
2
≤∫
a
b
f
2
(x)dx∫
a
b
g
2
(x)dx.
选项
答案
构造辅助函数 F(t)=[∫
a
t
f(x)g(x)dx]
2
-∫
a
t
f
2
(x)dx ∫
a
t
g
2
(x)dx, 则F(a)=0,且 F’(t)=2f(t)g(t)∫
a
t
f(x)g(x)dx-f
2
(x)∫
a
t
g
2
(x)dx-g
2
(t)∫
a
t
f
2
(x)dx =∫
a
t
[2f(x)g(x)f(t)g(t)-f
2
(t)g
2
(x)-g
2
(t)f
2
(x)]dx =-∫
a
t
[f(t)g(x)-g(t)f(x)]
2
dx≤0, 所以F(b)≤0,即[∫
a
b
f(x)g(x)dx]
2
-∫
a
b
f
2
(x)dx∫
a
b
g
2
(x)dx≤0,即 [∫
a
b
f(x)g(x)dx]
2
≤∫
a
b
f
2
(x)dx∫
a
b
g
2
(x)dx.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/oT04777K
0
考研数学一
相关试题推荐
已知f(0)=0,则f(x)在点x=0处可导的充分必要条件是()
设连续型随机变量X的密度函数和分布函数分别为f(x)与F(x),则().
随机变量X~N(0,1),Y~N(1,4),且相关系数ρ=1,则()
直线关于坐标面z=0的对称直线的方程为()
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解;则秩(A
已知向量β=(a1,a2,a3,a4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,-1,-3)T,α4=(0,0,3,3)T线性表出。(Ⅰ)求a1,a2,a3,a4应满足的条件;(Ⅱ)求向量组α1,α2,α3
(2002年)设函数f(x)在(一∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d)。记(I)证明曲线积分I与路径L无关;(Ⅱ)当ab=cd时,求I的值。
(2005年)如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4)。设函数f(x)具有三阶连续导数,计算定积分
总体X的概率密度为f(x;σ)=σ∈(0,+∞),一∞<x<+∞,X1,X2,…,Xn为来自总体X的简单随机样本.(I)求σ的极大似然估计.(Ⅱ)求.
在椭球面χ2+2y2+z2=1上求一点使函数f(χ,y,z)=χ2+y2+z2在该点沿方向l=(1.-1.0)的方向导数最大.
随机试题
在我看来,这所谓“南洋武术班”的几套把式比起从前“香市”里的打拳头卖膏药的玩意来,委实是好看多了。要是放在十多年前,怕不是挤得满场没有个空隙儿么?但是今天第一天也只有二百来看客。往常“香市”的主角——农民,今天差不多看不见。从全文看作者为什么要描写这冷
下列支持淋巴瘤分期为B组的临床表现是
慢性肾功能不全,尿毒症期患者,下列哪一项表现不属于肾性骨营养不良
A.贝壳、甲壳、化石及多种矿物药B.芳香性药物C.某些粉末状药物及细小的植物种子药物D.较贵重的药物E.胶质的药物
TheFaerieQueeneisthemasterpieceofEdmundSpensewhichistosingthepraiseof______.
尚未完全丧失辨认或者控制能力的精神病人,实施严重危害社会行为的,()。
下列不是IP协议提供服务的特点的是
Whatisthemandoing?
A—assemblylineJ—safetybootsB—packerK—shippingclerkC—forkliftL—timecardD—explosivematerialsM—warehouseE—fireextingu
Whathappenedwhenthemanwasout?
最新回复
(
0
)