首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在椭球面χ2+2y2+z2=1上求一点使函数f(χ,y,z)=χ2+y2+z2在该点沿方向l=(1.-1.0)的方向导数最大.
在椭球面χ2+2y2+z2=1上求一点使函数f(χ,y,z)=χ2+y2+z2在该点沿方向l=(1.-1.0)的方向导数最大.
admin
2018-06-12
84
问题
在椭球面χ
2
+2y
2
+z
2
=1上求一点使函数f(χ,y,z)=χ
2
+y
2
+z
2
在该点沿方向l=(1.-1.0)的方向导数最大.
选项
答案
(Ⅰ)l的方向余弦为 [*](cosα,cosβ,cosγ)=[*](1,-1,0) 则f(χ,y,z)在[*]点(χ,y,z)沿方向l的方向导数 [*] (Ⅱ)问题变成求[*](χ-y)在条件χ
2
+2y
2
+z
2
-1=0下的最大值点. 用拉格朗日乘子法.构造拉格朗日函数,令 F(χ,y,z,λ)=[*](χ-y)+λ(χ
2
+2y
2
+z
2
-1) 解方程组 [*] 由①,②得y=-[*],由③得z=0,代入④得 [*] 于是解得 [*] 当(χ,y,z)=[*]时[*]; 当(χ,y,z)=[*]时[*]. 因此,求得[*]处[*](χ-y)取最大值.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/HFg4777K
0
考研数学一
相关试题推荐
设l为曲线y=y(x)在区间一1≤x≤1上的弧段,则平面第一型曲线积∫l(|x|3+y)ds=________.
设an=试证明:(Ⅰ)an+1<an且(Ⅱ)级数条件收敛.
证明:已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
已知方程组有解,证明:方程组无解.
设随机变量Xi~N(0,1),i=1,2且相互独立,令Y1=,Y2=X12+X22,试分别计算随机变量Y1与Y2的概率密度.
设A(2,2),B(1,1),г是从点A到点B的线段下方的一条光滑定向曲线y=y(χ),且它与围成的面积为2,又φ(y)有连续导数,求曲线积分I=∫г[πφ(y)cosπχ-2πy]dχ+[φ′(y)sinπχ-2π]dy.
设二次型χTAχ=χ12+4χ22+χ32+2aχ1χ2+2bχ1χ3+2cχ2χ3,矩阵B=,满足AB=0.①用正交变换化χTAχ为标准形,写出所作变换.②求(A-3E)6.
已知f(x)二阶可导,且f(x)>0,f(x)f’’(x)-[f’(x)]2≥0(x∈R).若f(0)=1,证明:f(x)≥ef’(0)x(x∈R).
设f(x)=其中g(x)有二阶连续导数,且g(0)=1,g’(0)=-1,求f’(x),并讨论f’(x)在(-∞,+∞)内的连续性.
设又函数f(x)在点x=0处可导,求F(x)=f[φ(x)]的导数.
随机试题
设2阶矩阵A可逆,且A-1=对于矩阵令B=P1AP2,求B-1
诊断自身免疫性溶血性贫血首选的检测是
A.肾小管上皮细胞B.大量嗜酸性粒细胞C.大量白细胞伴有大量鳞状上皮细胞D.白细胞增多,以单核细胞为主E.大量淋巴细胞及单核细胞女性阴道炎尿液中可出现的细胞是
某企业资本结构及个别资本成本资料如表13—3所示。普通股成本为()。
广州李先生l0年前曾经在上海工作。这次参加一个旅游团故地重游。10月5日晚全团在吃风味晚餐的时候,李先生看到靠窗的一对老年人有些面熟,走近一看,是自己原工作单位的同事,双方相见,十分激动,这对夫妇盛情邀请李先生到他们家做客,但李先生说团队第二天要去参观博物
教育学生“诚实守信”是属于()。
用“树木,生命,呼吸,计算机,改变”等词,编一个故事。
一位门徒对他的师傅说:“大师你潜心修炼多年,能移动前面那座山吗?”师傅满怀信心地点了点头,对着山大喊一声:“山,你过来!”山纹丝不动,师傅说:“山不过来,我们过去吧!”于是,便带着门徒开始爬山,经过一番努力,终于爬到了山顶。到了山顶之后,师傅对门徒说:“这
甲为甲父唯一的儿子,甲父某月中彩票获奖200万元,甲为牟取巨额财产,遂杀害其父以便依法定继承甲父财产。对该行为理解正确的是()。
栈和队列的共同点是______。
最新回复
(
0
)