首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,α3和β1,β2,β3,β4都是4维实向量,其中r(α1,α2,α3)=2,r(β1,β2,β3,β4)>1,并且每个βi与α1,α2,α3都正交.则r(β1,β2,β3,β4)=
已知向量组α1,α2,α3和β1,β2,β3,β4都是4维实向量,其中r(α1,α2,α3)=2,r(β1,β2,β3,β4)>1,并且每个βi与α1,α2,α3都正交.则r(β1,β2,β3,β4)=
admin
2019-07-28
60
问题
已知向量组α
1
,α
2
,α
3
和β
1
,β
2
,β
3
,β
4
都是4维实向量,其中r(α
1
,α
2
,α
3
)=2,r(β
1
,β
2
,β
3
,β
4
)>1,并且每个β
i
与α
1
,α
2
,α
3
都正交.则r(β
1
,β
2
,β
3
,β
4
)=
选项
A、1.
B、2.
C、3
D、4
答案
B
解析
构造矩阵A=(α
1
,α
2
,α
3
),则β
i
都是与α
1
,α
2
,α
3
正交说明β
i
都是4元方程组A
T
χ=0解.再由r(α
1
,α
2
,α
3
)=2,得r(A
T
)=r(A)=2,于是A
T
χ=0的解集合的秩为2,从而r(β
1
,β
2
,β
3
,β
4
)=2.
转载请注明原文地址:https://www.kaotiyun.com/show/oPN4777K
0
考研数学二
相关试题推荐
f(x)在x0处可导,则|f(x)|在x0处().
设f(x)在(-1,1)内二阶连续可导,且f’’(x)≠0.证明:(1)对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];(2)
曲线的斜渐近线为________.
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)-∫0xf(t)dt=0.(1)求f’(x);(2)证明:当x≥0时,e-x≤f(x)≤1.
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设0<a<b,证明:
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f’’’(ξ)=3.
设函数其中g(x)二阶连续可导,且g(0)=1.(1)确定常数a,使得f(x)在x=0处连续;(2)求f’(x);(3)讨论f’(x)在x=0处的连续性.
已知方程组有无穷多解,则a=______.
当△x→0时α是比△x较高阶的无穷小量,函数y(x)在任意点x处的增量△y=,且y(0)=π,则y(1)=______.
随机试题
原胶原蛋白分子的二级结构是一种三股螺旋,这是一种()结构,其中每一股又是一种特殊的()结构。
下列关于非代理型CM模式的表述中,正确的是()。
下列()不属于结构安全性的要求。
一般资料:求助者,男性,21岁,大学三年级学生。案例介绍:求助者的一位女同学主动与他交朋友,交往了几个月后,他感觉对学习有影响,主动提出分手,分手后又后悔,又提出和好,可女友不同意。为此非常痛苦,睡不好觉,看不进去书。后来在同学中有一些关于他们的
适宜于冬季进行的科学教育活动内容是()。
南宋学者郑樵所著的(),是一部记述典章制度的通史,与唐杜佑、元马端临的作品合称“三通”。
结构化分析方法是一种面向(12)的需求分析方法,该方法最常用的图形工具是(13),与其配合使用的是(14)。(15)中有名字及方向的成分是(13),不能由计算机处理的成分是(16)。
系统初步调查主要目标就是从【】人员和管理人员的角度看新项目开发有无必要的可能。
图像框和图片框在使用时的不同之处是()。
A、Sheisthedirectorofthegroup.B、Sheisplayingthepiano.C、Sheisplayingtheviolin.D、Sheisplayingthebass.A
最新回复
(
0
)