首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n阶矩阵A满足(A一aE)(A一bE)=0,其中a≠b,证明A可对角化.
已知n阶矩阵A满足(A一aE)(A一bE)=0,其中a≠b,证明A可对角化.
admin
2017-08-07
106
问题
已知n阶矩阵A满足(A一aE)(A一bE)=0,其中a≠b,证明A可对角化.
选项
答案
首先证明A的特征值只能是a或b. 设λ是A的特征值,则(λ一a)(λ一b)=0,即λ=a或λ=b. 如果b不是A的特征值,则A一bE可逆,于是由(A一aE)(A一bE)=0推出A—aE=0,即A=aE是对角矩阵. 如果b是A的特征值,则|A一bE|=0.设η
1
,η
2
,…,η
t
是齐次方程组(A一bE)X=0的一个基础解系(这里t=n—r(A一bE)),它们都是属于b的特征向量.取A一bE的列向量组的一个最大无关组γ
1
,γ
2
,…,γ
k
,这里k=r(A一bE).则γ
1
,γ
2
,…,γ
k
是属于a的一组特征向量.则有A的k+t=n个线性无关的特征向量组γ
1
,γ
2
,…,γ
k
;η
1
,η
2
,…,η
t
,因此A可对角化.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/nor4777K
0
考研数学一
相关试题推荐
(2008年试题,18)设函数f(x)连续.(I)用定义证明F(x)可导。且F’(x)=f(x);(Ⅱ)设f(x)是周期为2的连续函数,证明也是周期为2的函数.
(2008年试题,22)设随机变量X与Y相互独立,X概率分布为,概率密度为记Z=X+Y.求P{Z≤1/2|X=0};
(2012年试题,三)设二维离散型随机变量X、Y的概率分布为求Cov(X—Y,Y)与ρxy.
(2004年试题,二)设随机变量X服从正态分布N(0,1),对给定的α(0
(2002年试题,一)已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=______________.
(2006年试题,21)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=O的两个解.求A的特征值与特征向量;
(1998年试题,十五)设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.附表:t分布表:P{t(n)≤t
(1997年试题,三)在某一人群中推广新技术是通过其中已掌握新技术的人进行的.设该人群的总人数为N,在t=0时刻已掌握新技术的人数为x0,在任意时刻t已掌握新技术的人数为x(t)(将x(t)视为连续可微变量),其变化率与已掌握新技术人数之积成正比,比例常数
历史上科学家皮尔逊进行抛掷一枚匀称硬币的试验,他当时掷了12000次,正面出现6019次.现在我们若重复他的试验,试求:要想使我们试验正面出现的频率与概率之差的绝对值不超过皮尔逊试验偏差的概率小于20%,现在我们应最多试验多少次?
随机试题
为保证堆焊层的质量,堆焊时应选用较大的熔合比。()
女性,36岁,因风湿性关节炎引起关节疼痛,在服用阿司匹林时,护士嘱其饭后服用的目的是
下列出票日期填写正确的是()。
“江作青罗带,山如碧玉簪”,形象贴切地比喻所描绘的秀美景色是()。
在诸多行政职能中,处在核心的地位和起主导作用的职能是行政决策。()
MenorcaorMajorca?Itisthattimeoftheyearagain.Thebrochuresarepilingupintravelagentswhilenewspapersandmagazin
软件测试的目的是1.____。通常2._____是在代码编写阶段可进行的测试,它是整个测试工作的基础。1.____A.证明软件系统中存在错误B.判定软件是否合格C.证明软件的正确性D.尽可能多地发现软件系统中地错误
执行语句PrintSgn(-2^3)+Abs(Int(-12.2)Mod100\Sqr(100))的输出结果为()。
GorkyParkisfamousformanythings,notmanyofthemgood.ForMuscovites,theircity’sbiggestgreenspaceusedtobeknowna
There’snobetterfeelinginajobthanwhenyouknowthebosshasfullconfidenceinyou.Youenterazonewhereyoucanreally
最新回复
(
0
)