首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2003年)设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y′≠0,x=x(y)是y=y(x)的反函数。 (I)试将x=x(y)所满足的微分方程变换为y=y(z)满足的微分方程; (Ⅱ)求变换后的微分方程满足初始条件y(0)=0,的
(2003年)设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y′≠0,x=x(y)是y=y(x)的反函数。 (I)试将x=x(y)所满足的微分方程变换为y=y(z)满足的微分方程; (Ⅱ)求变换后的微分方程满足初始条件y(0)=0,的
admin
2018-03-11
87
问题
(2003年)设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y′≠0,x=x(y)是y=y(x)的反函数。
(I)试将x=x(y)所满足的微分方程
变换为y=y(z)满足的微分方程;
(Ⅱ)求变换后的微分方程满足初始条件y(0)=0,
的解。
选项
答案
(I)将题中的[*]变换成以x为自变量y为因变量的导数[*]来表示(即通常所说的反函数变量变换),有 [*] 代入原方程,得 y"一y=sinx。 (*) (Ⅱ)方程(*)所对应的齐次方程为y"一y=0,特征方程为r
2
一1=0,根r
1,2
=±1,因此通解为Y=C
1
e
x
+C
2
e
-x
。 设方程(*)的特解为y
*
=Acosx+Bsinx,则 y
*
′=一Asinx+Bcosx,y
*
"=一Acosx—Bsinx, 代入方程(*),得 一Acosx一Bsinx—Acosx一Bsinx=一2Acosx一2Bsinx=sinx, 解得A=0,[*]从而y"一y=sinx的通解为 [*] 由y(0)=0,[*]得C
1
=1,C
2
=一1。故变换后的微分方程满足初始条件y(0)=0,y′(0)=[*]的解为 [*] 且y(x)的导函数[*]满足题设y′≠0条件。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/lvr4777K
0
考研数学一
相关试题推荐
根据阿贝尔定理,已知在某点x1(x1≠x0)的敛散性,证明该幂级数的收敛半径可分为以下三种情况:(1)若在x1处收敛,则收敛半径R≥|x1一x0|;(2)若在x1处发散,则收敛半径R≤|x1一x0|;(3)若在x1处条件收敛,则收敛半径R=|x1一x
若将在[0,2]上展开成正弦级数,则该级数的和函数S(x)为________.
设随机变量X的概率密度为求X的分布函数.
向半径为r的圆内随机抛一点,求此点到圆心之距离X的分布函数F(x),并求
已知极限求常数a,b,c。
(1998年)函数f(x)=(x2一x一2)|x3一x|不可导点的个数是()
(2016年)若是微分方程y′+p(x)y=q(x)的两个解,则q(x)=()
(2016年)已知函数f(x)可导,且f(0)=1,设数列{xn}满足xn+1=f(xn)(n=1,2,…).证明:存在,且
[2014年]设∑为曲面z=x2+y2(x≤1)的上侧,计算曲面积分I=(x一1)3dydz+(y一1)2dzdx+(z一1)dxdy.
[2017年]设薄片型物体S是圆锥面被柱面z2=2x割下的有限部分,其上任一点的密度为μ(x,y,z)=,记圆锥面与柱面的交线为C.[img][/img]求C在xOy平面上的投影曲线的方程;
随机试题
减压器是用来表示瓶内气体压力以及减压后气体压力的一种装置。
食品药品监督管理局向一药店发放药品经营许可证。后接举报称,该药店存在大量非法出售处方药的行为,该局在调查中发现药店的药品经营许可证系提供虚假材料欺骗所得。关于对许可证的处理,该局下列做法中正确的是()。
.
经典性病主要有
患儿,面色萎黄,黏膜、指甲苍白,不思饮食,四肢乏力,大便溏泄,舌质淡,苔薄白,脉细无力。辨证用方为
(2015年)2015年3月2日,甲将其生产的一批价值30万元的设备寄存于乙的仓库,寄存期限截至2015年4月30日。3月5日,甲将该批设备抵押给债权人A公司,双方签订了书面抵押合同,但未办理抵押登记。3月9日,乙向丙谎称该批设备属于自己,以35
椭圆,如图所示,其中F是左焦点,∠FBA=90°,则该椭圆的离心率e=()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
我国开始建立教师资格证书制度是在20世纪()
•Lookatthenotebelow.•Youwillhearawomancallingaboutaconferencebooking.MessageTo:
最新回复
(
0
)