首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
根据阿贝尔定理,已知在某点x1(x1≠x0)的敛散性,证明该幂级数的收敛半径可分为以下三种情况: (1)若在x1处收敛,则收敛半径R≥|x1一x0|; (2)若在x1处发散,则收敛半径R≤|x1一x0|; (3)若在x1处条件收敛,则收敛半径R=|x1一x
根据阿贝尔定理,已知在某点x1(x1≠x0)的敛散性,证明该幂级数的收敛半径可分为以下三种情况: (1)若在x1处收敛,则收敛半径R≥|x1一x0|; (2)若在x1处发散,则收敛半径R≤|x1一x0|; (3)若在x1处条件收敛,则收敛半径R=|x1一x
admin
2015-08-17
80
问题
根据阿贝尔定理,已知
在某点x
1
(x
1
≠x
0
)的敛散性,证明该幂级数的收敛半径可分为以下三种情况:
(1)若在x
1
处收敛,则收敛半径R≥|x
1
一x
0
|;
(2)若在x
1
处发散,则收敛半径R≤|x
1
一x
0
|;
(3)若在x
1
处条件收敛,则收敛半径R=|x
1
一x
0
|.
选项
答案
根据阿贝尔定理,(1)(2)是显然的.对于(3),因幂级数[*]在点x
1
处收敛,则R≥|x
1
一x
0
|;另一方面,因幂级数[*]在点x
1
处条件收敛,则R≤|x
1
一x
0
|.因若不然,则该点是绝对收敛,而不是条件收敛,这与题设矛盾,于是,综合上述两方面得该幂级数的收敛半径R=|x
1
一x
0
|.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/K1w4777K
0
考研数学一
相关试题推荐
设0<a1<π,且an+1=sinan.
4阶矩阵A,B满足ABA-1=BA-1+3E,已知
设z=z(x,y)是由方程z一y—x+xez=0确定的二元函数,求dz.
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
已知向量组有相同的秩,且β3可由α1,α2,α3线性表出,求a,b的值.
一个盒子内放有12个大小相同的球,其中有5个红球,4个白球,3个黑球.第一次随机地摸出2个球,观察后不放回,第二次随机地摸出3个球,记Xi表示第i次摸到的红球的数目(i=1,2);Yj表示第j次摸到的白球数,求:在分别已知X2=j(j=0,1,2,3)
一个盒子内放有12个大小相同的球,其中有5个红球,4个白球,3个黑球.第一次随机地摸出2个球,观察后不放回,第二次随机地摸出3个球,记Xi表示第i次摸到的红球的数目(i=1,2);Yj表示第j次摸到的白球数,求:(X1,X2)的分布;
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.(1)证明:β,Aβ,A2β线性无关;(2)若A3β=Aβ,求秩r(A一E)及行列式|A+2E|.
二次型f(x1,x2,x3)=2x12+3x22+3x32+2ax2x3(a>0)经过正交变换化为标准形f=y12+2y22+5y32,求参数a及所用的正交变换。
函数的麦克劳林公式中x4项的系数是__________.
随机试题
A.酸枣仁、茯神B.酸枣仁、知母C.远志、丹参D.川芎、当归酸枣仁汤的组成中含
毛细血管内增生性肾小球肾炎的肉眼变化主要呈现
对MRSA引起的肺炎,首选的抗生素是()
在刑事诉讼中,下列哪些材料不得作为鉴定意见使用?()(2005年司考,卷二,第70题)
下列关于单代号网络图表述正确的是()。[2013年真题]
购买欲望是需求的()。
以舞剧()和《大梦敦煌》为代表的文艺精品,已经成为外界认知甘肃的标志之一。
一种认识是不是真理,要看它()。
若关系R、S如下图所示,则关系代数表达式π1,3,7(σ3<6(R×s))与(52)等价。
TheArtofPublicSpeakingThinkwhatmighthappenifyoutriedtobuildahousewithoutafloorplanoranarchitect’sblu
最新回复
(
0
)