首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1+A,1,1,1),α2=(2,2+A,2,2),α3=(3,3,3+A,3),α4=(4,4,4,4+A).问A为什么数时α1,α2,α3,α4线性相关?在α1,α2,α3,α4线性相关时求出一个最大线性无关组.
设α1=(1+A,1,1,1),α2=(2,2+A,2,2),α3=(3,3,3+A,3),α4=(4,4,4,4+A).问A为什么数时α1,α2,α3,α4线性相关?在α1,α2,α3,α4线性相关时求出一个最大线性无关组.
admin
2018-06-27
85
问题
设α
1
=(1+A,1,1,1),α
2
=(2,2+A,2,2),α
3
=(3,3,3+A,3),α
4
=(4,4,4,4+A).问A为什么数时α
1
,α
2
,α
3
,α
4
线性相关?在α
1
,α
2
,α
3
,α
4
线性相关时求出一个最大线性无关组.
选项
答案
a=0或-10.a=0时,每个向量都构成最大线性无关组.a=-10,其中任何3个都构成最大线性无关组.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/lik4777K
0
考研数学二
相关试题推荐
设f(x),g(x)二阶可导,又f(0)=0,g(0)=0,f’(0)>0,g’(0)>0,令,则
设xOy平面第一象限中有曲线F:y=y(x),过点y’(x)>0.M(x,y)为F上任意一点,满足:弧段的长度与点M处厂的切线在x轴上的截距之差为导出y=y(x)满足的微分方程和初始条件;
以y1=excos2x,y2=exsin2x与y3=e-x为线性无关特解的三阶常系数齐次线性微分方程是
设A为n阶矩阵,对于齐次线性方程(I)Anx=0和(Ⅱ)An+1x=0,则必有
设y=f(x)二阶可导,f’(x)≠0,它的反函数是x=φ(y),又f(0)=1,f’(0)=,f’’(0)=-1,则=__________.
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中用正交变换化二次型xTAx为标准形,并写出所用正交变换;
设A是3阶矩阵,Ax=0有通解是k1ξ1+k2ξ2+Aξ3=ξ3,则存在可逆阵P,使得其中P是()
设平面区域则正确的是()
求椭圆所围成的公共部分的面积.
5kg肥皂溶于300L水中后,以每分钟10L的速度向内注入清水,同时向外抽出混合均匀的肥皂水,问何时余下的肥皂水中只有1kg肥皂.
随机试题
患者,女,35岁,鼻痒,眼痒,伴流清水样鼻涕,鼻塞半年余,无过敏史、家族史,半年前曾装修过住房,下列哪项检查不正确
A.漏出性胸水B.渗出性胸水C.两者都有D.两者都无系统性红斑狼疮引起的胸水类型是
患者,女性,30岁。阑尾切除术后2天出现寒战、高热,体温最高可达39.5℃,有右上腹胀满不适,伴叩击痛。致病菌可能为
患者,男,27岁。自去年冬季以来每日发生空腹痛,进食后疼痛缓解。平时伴有恶心、打嗝、反酸,查体在剑突右侧有局限压痛,无反跳痛。目前认为该病与何种细菌感染有关
《韩非子》记载了一则“狗猛酒酸”的故事:一宋国人酿酒技术高超,饲养一只猛犬看护家门,其后酒因卖不出去而变酸。该故事给我们的启示是()。
血缘关系是以血统或生理的联系为基础形成的人际关系;或者是指在婚姻和血缘基础上形成的人际关系。根据上述定义,下列人际关系中属于血缘关系的是()。
根据以下资料。回答下列问题。该省2011年招生、在校生、毕业生这三项指标均为负增长的是:
很早以前科学家就发现有些人对于某些药物的反应和其他病人不同。例如,某种麻醉用肌肉松弛剂会导致特定的人无法呼吸。后来,科学家发现产生这种现象的原因在于这类人拥有特定的基因。这也就带来了一个问题:研究人们之间的遗传差异是否可以促进医学发展出更高级的治疗手段,也
Inthe21stcenturythere’snodoubtthatfrighteningnewinfectiousdiseaseswillappear.Todaynewvirusesarecomingoutofn
Somepeoplebelievethatyouhavetobeaspecialkindofpersontosellaproduct.Butalthoughitisclearthatasuccessfuls
最新回复
(
0
)