首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,对于齐次线性方程(I)Anx=0和(Ⅱ)An+1x=0,则必有
设A为n阶矩阵,对于齐次线性方程(I)Anx=0和(Ⅱ)An+1x=0,则必有
admin
2014-02-05
96
问题
设A为n阶矩阵,对于齐次线性方程(I)A
n
x=0和(Ⅱ)A
n+1
x=0,则必有
选项
A、(Ⅱ)的解是(I)的解,(I)的解也是(Ⅱ)的解.
B、(I)的解是(Ⅱ)的解,但(Ⅱ)的解不是(I)的解.
C、(Ⅱ)的解是(I)的解,但(I)的解不是(Ⅱ)的解.
D、(I)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(I)的解.
答案
A
解析
若α是(I)的解,即A
n
α=0,显然A
n+1
α=A(A
n
α)=AO=0,即α必是(Ⅱ)的解.可排除C和D.若η是(Ⅱ)的解,即A
n+1
η=0.假若η不是(I)的解,即A
n
η≠0,那么对于向量组η,Aη,A
2
η,…,A
n
η,一方面这是n+1个n维向量必线性相关;另一方面,若kη+k
1
Aη+k
2
A
2
η+…+kA
n
η=0,用A
n
左乘上式,并把A
n+1
η=0,A
n+2
η=0,…,代入,得kA
n
η=0.由于A
n
η≠0,必有后=0.对k
1
Aη+k
2
A
2
η+…+kA
n
η=0,用A
n-1
左乘上式可推知k
1
=0.类似可知k
i
=0(i=2,3,…,n).于是向量组η,Aη,A
2
η,…,A
n
η线性无关,两者矛盾.所以必有A
n
η=0,即(Ⅱ)的解必是(I)的解.由此可排除B.故应选A.
转载请注明原文地址:https://www.kaotiyun.com/show/HU34777K
0
考研数学二
相关试题推荐
[2011年]设二维随机变量(X,Y)服从N(μ,μ;σ2,σ2;0),则E(XY2)=_____________.
[2011年]设A为三阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
(13年)设总体X的概率密度为其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.(Ⅰ)求θ的矩估计量;(Ⅱ)求θ的最大似然估计量.
[*]
(2018年)设函数f(x)在[0,1]上二阶可导,且∫01f(x)dx=0,则()
(91年)试证明n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式其中αiT表示列向量αi的转置,i=1,2,…,n.
设f(x)在[0,1]上二阶可导,|f’(x)|≤1(x∈[0,1]),f(0)=f(1),证明:对任意的x∈[0,1],有|f’(x)|≤1/2。
已知四维列向量α1,α2,α3线性无关,若向量β1(i=1,2,3,4)是非零向量且与向量α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为()。
设随机变量X的概率密度为,其中a,b为常数.记Φ(x)为N(0,1)的分布函数.若在x=1处f(x)取得最大值,则P{1-<X<1+}=()
利用变换x=-㏑t若上题中y(x)满足,y(0)=1,求y(x).
随机试题
在胰横断层面上,一般先出现
完全二叉树只能采用顺序存储方法,不能采用链表存储方法。()
钠泵的生理作用不包括
关于心肌异常CT表现,不正确的是
患者,男,35岁,肛门灼热疼痛,大便于结,小便短赤;舌红苔黄,脉数。治疗应首选( )
切线类技术分析方法中,常见的切线有()。Ⅰ.压力线Ⅱ.支撑线Ⅲ.趋势线Ⅳ.移动平均线
保证人对已经超过诉讼时效期间的债务承担保证责任或者提供保证的,又以超过诉讼时效为由抗辩的,人民法院予以支持。()
反向物流[浙江工商大学2011国际商务硕士]
Whattypeofbusinessdoesthespeakerhave?
A、Becomeagenius.B、Notreachhisintelligencelimitsinhislife.C、Reachhisintelligencelimitsinrichsurroundings.D、Stil
最新回复
(
0
)