首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
admin
2018-04-15
40
问题
设A=(α
1
,α
2
,α
3
,α
4
,α
5
),其中α
1
,α
3
,α
5
线性无关,且α
2
=3α
1
一α
3
一α
5
,α
4
=2α
1
+α
3
+6α
5
,求方程组AX=0的通解.
选项
答案
因为α
1
,α
3
,α
5
线性无关,又α
2
,α
4
可由α
1
,α
3
,α
5
线性表示,所以r(A)=3,齐次线性 方程组AX=0的基础解系含有两个线性无关的解向量. 由α
2
=3α
1
一α
3
一α
5
,α
4
=2α
1
+α
3
+6α
5
得方程组AX= 0的两个解为ξ
1
=(3,一1,一1,0,一1)
T
,ξ
2
=(2,0,1,一1,6)
T
故AX=0的通解为k
1
(3,一1,一1,0,一1)
T
+k
2
(2,0,1,一1,6)
T
(k
1
,k
2
为任意常数).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ier4777K
0
考研数学一
相关试题推荐
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2)α4能否由α
设an=,证明数列{an}收敛.
设X1,X2,…,X10是取自正态总体分布N(μ,σ2)的简单随机样本,是样本均值,记已知P(T≥a)=0.05,求a的值。
求微分方程y"-ay’=ebx(a,b为实常数,且a≠0,b≠0)的通解。
计算曲面积分4zxdydz-2zydzdx+(1-z2)dxdy,其中S为z=ey(0≤y≤a)绕z轴旋转成的曲面下侧。
曲线有()渐近线。
设线性方程组已知(1,一1,1,一1)T。是该方程组的一个解,试求:(Ⅰ)方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;(Ⅱ)该方程组满足x2=x3的全部解。
设总体X的概率分布为其中θ∈(0,1)未知,以Ni来表示来自总体X的简单随机样本(样本容量为n)中等于i的个数(i=1,2,3),试求常数a1,a2,a3使为θ的无偏估计量,并求T的方差.
设光滑曲面∑所围闭域Ω上,P(x,y,z)、Q(x,y,z)、R(x,y,z)有二阶连续偏导数,且∑为Ω的外侧边界曲面,由高斯公式可知的值为________
设f(x,y)在全平面有连续偏导数,曲线积分∫Lf(x,y)dx+xcosydy,在全平面与路径无关,且求f(x,y).
随机试题
AspectsthatMayFacilitateReadingI.Determiningyour【T1】______A.Readingfor【T2】______:likereadingthenovelHar
亚急性感染心内膜炎最常见的病原菌是
燃烧性能属于B2等级的是以下哪种材料?
下列属于复合材料的有()。
新课程内容标准中对第三学段中整式与分式的具体目标设置为“了解分式的概念,会利用分式的基本性质进行约分与通分,会进行简单的分式加、减、乘、除运算”,结合上述内容,对“分式(第一课时)”进行教学设计。请为本节课的教学设计一个课程导入。
学生既是教育的对象,又是教育过程中的主体,其主体作用的最高表现形式是()。
“金字塔”源于希伯来语,意思是“糕饼”,是古希伯来人食用的一种尖顶状的食物,埃及人称作“庇里穆斯”,即“高”的意思。()
在考生文件夹下打开EXCEL.XLSX文件:将工作表Sheet1命名为“降雨量统计表”,然后将工作表的A1:H1单元格合并为一个单元格,单元格内容水平居中;计算“平均值”列的内容(数值型,保留小数点后1位);计算“最亭值”行的内容置B7:G7内(某月三
Americansocietyisnotnap(午睡)friendly.Infact,saysDavidDinges,asleepspecialistattheUniversityofPennsylvaniaScho
CommunicatingwithStrangersI.Theconceptofthestrangerandthedefinitionofstrangeness:A.Strangenessandfamiliarity
最新回复
(
0
)