首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)可导,F(x)=f(x)(1+︱sinx︱),则f(0)=0是F(x)在x=0处可导的( )
设f(x)可导,F(x)=f(x)(1+︱sinx︱),则f(0)=0是F(x)在x=0处可导的( )
admin
2019-01-15
40
问题
设f(x)可导,F(x)=f(x)(1+︱sinx︱),则f(0)=0是F(x)在x=0处可导的( )
选项
A、充分必要条件
B、充分条件但非必要条件
C、必要条件但非充分条件
D、既非充分条件又非必要条件
答案
A
解析
F(x)在x=0可导的充分必要条件是左、右导数都存在且相等,于是由
由此可知f(0)=0是F(x)在x=0处可导的充要条件,故选A。
转载请注明原文地址:https://www.kaotiyun.com/show/hbP4777K
0
考研数学三
相关试题推荐
(91年)对任意两个随机变量X和Y,若E(XY)=E(X).E(Y),则【】
(15年)设3阶矩阵A的特征值为2,-2,1,B=A2-A+E,,其中E为3阶单位矩阵,则行列式|B|=_______.
(96年)设其中ai≠aj(i≠j,i,j=1,2,…,n).则线性方程组ATX=B的解是_______.
(91年)设A为n阶可逆矩阵,λ是A的一个特征根,则A的伴随矩阵A*的特征值之一是【】
(02年)设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
(09年)设二次型f(χ1,χ2,χ3)=aχ12+aχ22+(a-1)χ32+2χ1χ3-2χ2χ3.(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型厂的规范形为y12+y22,求a的值.
(93年)设二次型f=χ12+χ22+χ32+2αχ1χ2+2βχ2χ3+2χ1χ3经正交交换X=PY化成f=y22+2y32,其中X=(χ1,χ2,χ3)T和Y=(y1,y2,y3)T是3维列向量,P是3阶正交矩阵,试求常数α,β.
设n个n维列向量α1,α2,…,αn线性无关,P为n阶方阵,证明:向量组Pα1,Pα2,…,Pαn线性无关|P|≠0.
设A为n阶非零方阵,且存在某正整数m,使Am=O.求A的特征值并证明A不与对角矩阵相似.
随机试题
简述中外合作经营企业的含义及法律特征。
闻名于世的阿尔塔米拉岩洞艺术位于()
甲对租赁房屋的占有属于()
关于三合诊检查,正确的描述是
患者,女性,55岁,眼干、口干5年,右腮腺肿物3年,逐渐加重,现已出现咀嚼及吞咽困难。右腮腺肿物2cm×3cm大小,表面光滑,无压痛,未见面瘫征象。有类风湿关节炎病史15年。若对该患者行腮腺造影检查,其表现中不正确的是
依照我国《海商法》相关规定,下列哪些诉讼应适用受理案件的法院所在地法律?()(司考.2006.1.82)
下列属于燃气管道的主要附件的包括()。
请就P2P谈一下金融创新和金融监管的关系以及监管机构如何监管。
设有定义下列:inta=1,b=2,c=3,d=4,m=2,n=2;则表达式(m=a>b)&&(n=c>d)运算后,n的值是()。
Whatdoesthewomanmean?
最新回复
(
0
)