首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(01年)设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(χ1,χ2,…,χn)=. (1)记X=(χ1,χ2,…,χn)T,把f(χ1,χ2,…χn)写成矩阵形式,并证
(01年)设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(χ1,χ2,…,χn)=. (1)记X=(χ1,χ2,…,χn)T,把f(χ1,χ2,…χn)写成矩阵形式,并证
admin
2017-05-26
63
问题
(01年)设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=(a
ij
)
n×n
中元素a
ij
的代数余子式(i,j=1,2,…,n),二次型f(χ
1
,χ
2
,…,χ
n
)=
.
(1)记X=(χ
1
,χ
2
,…,χ
n
)
T
,把f(χ
1
,χ
2
,…χ
n
)写成矩阵形式,并证明二次型f(X)的矩阵为A
-1
.
(2)二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
(1)因为A为对称矩阵,所以A
ij
=A
ji
(i,j=1,2,…,n).因此f(X)的矩阵形式为 [*] 因秩(A)=n,故A可逆,且 [*] 从而 (A
-1
)
T
=(A
T
)
-1
=A
-1
故A
-1
也是实对称矩阵.因此,二次型f(X)的矩阵为 [*] (2) 因为 (A
-1
)
T
AA
-1
=(A
T
)
-1
E=A
-1
所以A与A
-1
合同,于是g(X)=X
T
AX与f(X)有相同的规范形.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ctH4777K
0
考研数学三
相关试题推荐
设向量a=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件aTβ=0,记n阶矩阵A=aβT,求:(Ⅰ)A2;(Ⅱ)矩阵A的特征值和特征向量.
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组(Ⅰ)求λ的值;(Ⅱ)证明|B|=0.
设A为三阶矩阵,A的特征值为λ1=1,λ22,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则().
设A是n阶矩阵,下列不是命题“0是矩阵A的特征值”的充分必要条件的是().
求一个正交变换,化二次型f=x12+4x22+4x32-4x1x2-8x2x3,为标准形.
设二次型f(x1,x2,x3)=x12-x22+2ax1x3+4x2x3,的负惯性指数为1,则a的取值范围是__________.
二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3的规范形为().
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x1x3-6x2x3的矩阵合同于(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
随机试题
女,45岁,间歇性右上腹痛伴皮肤巩膜黄染,发热10天,加重3天入院。治疗期间突然出现寒战、高热,体温39.4℃,神志淡漠,面色苍白,皮肤厥冷,手足冰冷,脉率125次/分,血压70/45mmHg。根据患者的临床表现,其目前应处于
患者,女性,25岁,近2个月来轻度咳嗽,咳白色黏痰,内带血丝;午后低热,面颊潮红,疲乏无力,常有心悸、盗汗,较前消瘦。经X线摄片检查,发现右上肺第2肋部位有云雾状阴影,无透光区。痰菌3次检验阴性,你认为下列哪项护理措施不必要
在眼底示意图中,不同的眼底表现用不同的颜色表示A、红色B、蓝色C、绿色D、黄色E、棕色视网膜皱褶()
有关输卵管结扎术的最佳时间,正确的是
牙体硬组织的形成始于
根据《安全生产法》的规定,对安全生产违法行为的行政处罚的形式有()。(2008年真题)
新增固定资产。卡片编号:00011资产编号:1001固资名称:电视机固资类别:电子产品及通讯设备使用状态:使用中增加方式:直接购入原值:3500增加日期:2014—01—18使用部门:管理部折旧费用科目:6602—01折旧费折旧方法:
劳动争议当事人的权利包括()。
根据幼儿心理发展特点,“前读写”阶段主要完成的任务是()。
资本主义国家的选举是资产阶级制定某种原则和程序,通过竞选产生议会和国家元首的一种政治机制,资本主义国家竞选制度的实质是
最新回复
(
0
)