首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs线性无关,βi=αi+αi+1,i=1,…,s一1,βs=αs+α1.判断β1,β2,…,βs线性相关还是线性无关?
设α1,α2,…,αs线性无关,βi=αi+αi+1,i=1,…,s一1,βs=αs+α1.判断β1,β2,…,βs线性相关还是线性无关?
admin
2017-08-07
67
问题
设α
1
,α
2
,…,α
s
线性无关,β
i
=α
i
+α
i+1
,i=1,…,s一1,β
s
=α
s
+α
1
.判断β
1
,β
2
,…,β
s
线性相关还是线性无关?
选项
答案
β
1
,β
2
,…,β
s
对α
1
,α
2
,…,α
s
的表示矩阵为 [*] |C|=1+(一1)
s+1
. 于是当s为偶数时,|C|=0,r(C)<s,从而r(β
1
,β
2
,…,β
s
)<s,β
1
,β
2
,…,β
s
线性相关. 当s为奇数时,|C|=2,r(C)=s,从而r(β
1
,β
2
,…,β
s
)=s,β
1
,β
2
,…,β
s
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/gzr4777K
0
考研数学一
相关试题推荐
设矩阵,则A与B().
设A,B为同阶方阵,(Ⅰ)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立.(Ⅲ)当A,B均实对称矩阵时,试证(Ⅰ)的逆命题成立.
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为().
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
已知4阶方阵A=(a1,a2,a3,a4),a1,a2,a3,a4均为4维列向量,其a2,a3,a4线性无关,a1=2a1-a3,如果β=a1+a2+a3+a4,求线性方程组Ax=β的通解.
设A=,a=(a,1,1)T,已知Aa与a线性相关,则a=_________.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(Ⅰ)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=().
(2004年试题,三)设A,B为随机事件,且令求:X与Y的相关系数ρxy
(1998年试题,十一)设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
随机试题
附着式升降脚手架安装搭设必须严格按照()进行。
海关职权
作尿脱落细胞学检查,应收集()
A、出生后6小时内出现呼吸困难,发绀进行性加剧,甚至呼吸衰竭B、呼吸不规则,阵发性发绀,啼哭后发绀改善C、复苏后呼吸减慢D、气促,口吐泡沫E、出生后短时间内出现气促,可伴呻吟,发绀,病情恢复快上述哪项为新
丙型肝炎主要传播途径是
( )是内部会计控制制度的重要内容,应当与会计人员岗位责任制结合考虑。
下面是党在不同历史时期对待富农政策的材料:【材料一】削弱富农经济上的势力,与打击他们窃取土地革命果实的企图。……没收他们多余的农具与好的田地,分给他们坏的“劳动分地”。一摘自1933年中央局关于查田运动决议【材料二】在对富
设α1,α2,…,αn为n个n维列向量,证明:α1,α2,…,αn线性无关的充分必要条件是
在窗体中添加名称为Command1和名称为Command2的命令按钮以及文本框Text1,然后编写如下代码:PrivateSubCommand1_Click()Text1.Text="AB"EndS
Formanycountriestherearetwolegalmeansforobtainingtechnology.topermitmultinationalcompaniestoconductbusinesswit
最新回复
(
0
)