首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为n阶正定矩阵,k>0,证明kA,Ak,A-1,A*,A+B是正定阵.
设A,B为n阶正定矩阵,k>0,证明kA,Ak,A-1,A*,A+B是正定阵.
admin
2020-09-25
88
问题
设A,B为n阶正定矩阵,k>0,证明kA,A
k
,A
-1
,A*,A+B是正定阵.
选项
答案
设A,B的特征值分别为λ
1
,λ
2
,…,λ
n
,μ
1
,μ
2
,…,μ
n
. 因为A,B为正定矩阵,所以λ
i
,μ
j
>0(i=1,2,…,n;j=1,2,…,n).由特征值性质得: kA的特征值为kλ
1
,kλ
2
,…,kλ
n
;A
k
的特征值为λ
1
k
,λ
2
k
,…,λ
n
k
;A
-1
的特征值为[*];A*的特征值为[*] 又因为k>0可知kA,A
k
,A
-1
,A*的特征值均全为正,所以kA,A
-1
,A*,A
k
均为正定阵. 又由A,B为正定矩阵知,对于任一n维非零向量x,均有x
T
Ax>0,x
T
Bx>0,所以x
T
(A+B)x>0,所以A+B也是正定阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/gPx4777K
0
考研数学三
相关试题推荐
=__________
=_____________。
设平面区域D由直线y=x,圆x2+y2=2y及y轴所围成,则二重积分xydσ=__________。
设A=,B是3阶非零矩阵,且AB=O,则a=________
设连续型随机变量X的概率密度为f(x)=F(X)为X的分布函数,E(X)为X的数学期望,则P{F(X)>E(X)—1}=________.
(2013年)设函数f(x)在[0,+∞)上可导,f(0)=0且=2,证明:(I)存在a>0,使得f(a)=1;(Ⅱ)对(I)中的a,存在ξ∈(0,a),使得f’(ξ)=。
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中P=;(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T,试讨论当a,b为何值时。(Ⅰ)β不能由α1,α2,α3线性表示;(Ⅱ)β可由α1,α2,α3唯一地线性表示,并求出表
设α1,α2,…,αm与β1,β2,…,βS为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βS)一r,则().
[2002年]设随机变量X和Y都服从标准正态分布,则().
随机试题
A.滤泡小,均匀,排列整齐,不融合,主要见于下穹隆部B.滤泡小,均匀,排列整齐,不融合,主要见于下穹隆部,有结膜充血及分泌物C.睑结膜面可见膜状物,剥离时结膜面出血D.滤泡形态不一,大小不等,有乳头肥大及角膜血管翳E.绒状小乳头,滤泡很少见白喉
患者,女,32岁。患者近2个月来因精神压力过度,明显乏力消瘦,情绪易急躁,睡眠差,月经量少。1周前患感冒,无发热。2天来出现阵发性心悸而来院。既往有关节痛史,无心脏病及高血压史。入院查体:体温37.5℃,脉搏96次/分,血压140/70mmHg,皮肤出汗较
电磁辐射属于()危险、有害因素,一氧化碳属于()危险、有害因素,计算机操作者的座椅不合适属于()危险、有害因素。
法定保险的统一性是指()。
()朝最后一个帝王为博得爱妃一笑,不惜“烽火戏诸侯”,导致最后没有一个诸侯发兵相救。
简要说明基础教育新课程改革的具体目标。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
根据《侵权责任法》的规定,下列关于医疗损害责任的表述,正确的是
影响测试有效性的因素——1995年英译汉及详解Thestandardizededucationalorpsychologicalteststhatarewidelyusedtoaidinselecting,classifyi
下列IPv6地址表示中,错误的是()。
最新回复
(
0
)