首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有四个命题 (1)(I)的解必是(Ⅱ)的解. (2)(Ⅱ)的解必是(I)的解. (3)(I)的解不是(Ⅱ)的解. (4)(Ⅱ)的解不是(I)的解. 以上命题中正确的是( )
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有四个命题 (1)(I)的解必是(Ⅱ)的解. (2)(Ⅱ)的解必是(I)的解. (3)(I)的解不是(Ⅱ)的解. (4)(Ⅱ)的解不是(I)的解. 以上命题中正确的是( )
admin
2020-03-01
46
问题
设A是n阶矩阵,对于齐次线性方程组(I)A
n
x=0和(Ⅱ)A
n+1
x=0,现有四个命题
(1)(I)的解必是(Ⅱ)的解.
(2)(Ⅱ)的解必是(I)的解.
(3)(I)的解不是(Ⅱ)的解.
(4)(Ⅱ)的解不是(I)的解.
以上命题中正确的是( )
选项
A、(1)(2).
B、(1)(4).
C、(3)(4).
D、(2)(3).
答案
A
解析
若A
n
α=0,则A
n+1
α=A(A
n
α)=A0=0,即若α是(I)的解,则α必是(Ⅱ)的解,可见命题(I)正确.如果A
n+1
α=0,而A
n
α≠0,那么对于向量组α,A
1
α,A
2
α,…,A
n
α,一方面有:若kα+k
1
A
1
α+k
2
A
2
α+…+knA
n
α=0,用A
n
左乘上式的两边,并把A
n+1
α=0,A
n+2
α=0…代入,得kA
n
α=0.由A
n
α≠0知,必有k=0.类似地用A
n-1
左乘可得k
1
=0.因此,α,A
1
α,A
2
α,…,A
n
α线性无关.但另一方面,这是n+1个n维向量,它们必然线性相关,两者矛盾.故A
n+1
α=0时,必有A
n
α=0,即(Ⅱ)的解必是(I)的解.因此命题(2)正确.所以应选A.
转载请注明原文地址:https://www.kaotiyun.com/show/fVA4777K
0
考研数学二
相关试题推荐
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则()正确.
设α1,α2,…,αs均为n维向量,下列结论中不正确的是()
设f(x)=则()
已知函数f(xy,x+y)=x2+y2+xy,则分别为[].
f(x)=xex的n阶麦克劳林公式为()
设函数y=f(x)在点x=x。处可微,△y=f(x。+△x)-f(x。),则当△x→0时,必有[].
非齐次线性方程组AX=b中未知量个数为n,方程个数为优,系数矩阵A的秩为r,则().
二次型f(x1,x2,x3)=(a1x1+a2x2+a3x3)(b1x1+b2x2+b3x3)的矩阵为________。
数列1,,…的最大项为________.
[2008年]设函数f(x)在(一∞,+∞)内单调有界,{xn}为数列,下列命题正确的是().
随机试题
ADSL上行速率在()。
下列检查项目对ARDS的诊断和病情判断有重要意义的是
下面()建筑不是一级火灾自动报警系统保护对象。
证券交易所决定终止股票上市交易的情形不包括()。
《未成年人保护法》规定,根据未成年人的年龄和智力发展状况,父母或其他监护人在作出与未成年人权益有关的决定时()
邓小平关于社会主义本质的科学概括有哪些最显著的特点?
要进行社情民意调查,你是调查组里的唯一一名派出所民警,请谈谈你的工作思路。
Videogamesgetabadpress.Manyareunquestionablyviolentand,ashasbeenthewaywithnewmediafromnovelstocomicbooks
WhichofthefollowingsentencesisINCORRECT?
A、Theunemploymentrateishigh.B、Thehousemarketbreaksdown.C、Thefrustratedpoliticalsituation.D、Pricesofgoodsrisesh
最新回复
(
0
)