首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T. 令C=(α1,α2,α3,α4,b),求Cx=b的通解.
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T. 令C=(α1,α2,α3,α4,b),求Cx=b的通解.
admin
2019-08-27
52
问题
已知A=(α
1
,α
2
,α
3
,α
4
),非齐次线性方程组Ax=b的通解为(1,1,1,1)
T
+k
1
(1,0,2,1)
T
+k
2
(2,1,1,-1)
T
.
令C=(α
1
,α
2
,α
3
,α
4
,b),求Cx=b的通解.
选项
答案
先求Cx=0的基础解系. 由于C即为线性方程组Ax=b的增广矩阵,故R(C)=R(A)=2,可知Cx=0的基础解系中含有5—2=3个线性无关的解向量,为此,需要找出Cx=0的三个线性无关的解. 由于(1,0,2,1)
T
,(2,1,1,-1)
T
均为Ax=0的解,可知(1,0,2,1,0)
T
,(2,1,1一1,0)
T
均为Cx=0的解.而(1,1,1,1)
T
为Ax=b的解,可知α
1
+α
2
+α
3
+α
4
=b,也即α
1
+α
2
+α
3
+α
4
-b=0,故(1,1,1,1,-1)
T
也为Cx=0的解. 这样,我们就找到了Cx=0的三个解:(1,0,2,1,0)
T
,(2,1,1,-1,0)
T
,(1,1,1,1,-1)
T
,容易验证它们是线性无关的,故它们即为Cx=0的基础解系. 最后,易知(O,0,0,0,1)
T
为Cx=b的解,故Cx=b的通解为(0,0,0,0,1)
T
+k
1
(1,0,2,1,0)
T
+k
2
(2,1,1,-1,0)
T
+k
3
(1,1,1,1,-1)
T
,k
i
∈R,i=1,2,3.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/f2A4777K
0
考研数学二
相关试题推荐
设f(x)满足f”(x)﹢x[f’(x)]2sinx,且f’(0)=0,则()
求极限:.
求微分方程y’’一a(y’)2=0(a>0)满足初始条件y|x=0=0,y’|x=0=一1的特解。
设f(u,v)具有连续偏导数,且满足fu’(u,v)+fv’(u,v)=uv,求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解。
设f(x,y)有连续的偏导数且f(x,y)(ydx+xdy)为某一函数u(x,y)的全微分,则下列等式成立的是
求极限
设函数f(x,y)为可微函数,且对任意的x,y都有,则使不等式f(x1,y1)>f(x2,y2)成立的一个充分条件是().
设f(x)在x=1处一阶连续可导,且f’(1)=-2,则=_______
设f’(x)连续,f(0)=0,f’(0)≠0,F(x)=∫0xtf(t2-x2)dt,且当x→0时,F(x)~xn,求n及f’(0).
设多项式,则x2的系数和常数项分别为()
随机试题
为什么说审美是艺术最核心的功能?
Iusuallylikeeggsandham,butIdon’t______eatingthemtoday.
某市检察院张某在办理一起受贿案件时,发现犯罪嫌疑人之一系其堂妹,故申请回避并经检察长同意。下列关于张某在申请回避前所取得的证据和进行的诉讼行为效力问题的表述,哪一项是正确的?(2005年试卷2第24题)
如图B8.2所示为城市道路无障碍设计的盲道铺砌块,关于它的下列说法哪个正确?[2011一053]
湿式报警阀组调试时,从试水装置处放水,当湿式报警阀进水压力大于0.14MPa、放水流量大于1L/s时,报警阀启动,带延迟器的水力警铃在5~90s内发出报警铃声,不带延迟器的水力警铃应在()s内发出报警铃声,压力开关动作,并反馈信号。
社会工作者在协助妇女重新界定问题时的具体方法和技巧包括()。
“宽着期限,紧着课程。为学要刚毅果决,悠悠不济事。”体现的是“朱子读书法”中的
甲有遗嘱,将其两幅字画留给好友乙。甲死后次日,乙表示接受遗嘱。后乙在遗产分割前死亡。对此,下列表述正确的是()(2016年一专一第37题)
下列各选项中,不属于Internet应用的是()。
Shewanteddesperatelytoturntheflower-paintedchina______ontheapple-greendoor,andgothrough,butsomehowshecouldnot.
最新回复
(
0
)