首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B均是4阶方阵,且r(A)=3,A*,B*是矩阵A,B的伴随矩阵,则矩阵方程A*X=B一定有解的充要条件是 ( )
设A,B均是4阶方阵,且r(A)=3,A*,B*是矩阵A,B的伴随矩阵,则矩阵方程A*X=B一定有解的充要条件是 ( )
admin
2018-12-21
74
问题
设A,B均是4阶方阵,且r(A)=3,A
*
,B
*
是矩阵A,B的伴随矩阵,则矩阵方程A
*
X=B一定有解的充要条件是 ( )
选项
A、r(B)≤1.
B、r(B)≤2.
C、r(B)≤3.
D、r(B)≤4.
答案
B
解析
由题设条件知,r(A)=3,则r(A
*
)=1.
A
*
X=B有解
r(A
*
)=r(A
*
B
*
)=1
r(B
*
)≤1.
而当r(B
*
)=1时,有可能使r(A
*
B
*
)=2.
如
则r(A
*
)≠r(A
*
B
*
)
A
*
X=B
*
无解.
故r(B
*
)=0,此时r(B)≤2,有
r(A
*
)=r(A
*
B
*
)=1
A
*
X=B
*
有解.
故应选(B).
转载请注明原文地址:https://www.kaotiyun.com/show/t8j4777K
0
考研数学二
相关试题推荐
(2007年)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5=4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α是矩阵B的特征向量,并求B的全部特征值与特征向量;
(2008年)曲线y=(χ-5)的拐点坐标为_______.
(2010年)曲线y=χ2与曲线y=alnχ(a≠0)相切,则a=【】
(2012年)设A为3阶矩阵,|A|=3,A*为A的佯随矩阵,若交换A的第1行与第2行得矩阵B,则|BA*|=_______.
(2006年)证明:当0<a<b<π时,bsinb+2cosb+π6>asina+2cosa+πa.
(2012年)已知函数f(χ)满足方程f〞(χ)+f′(χ)-2f(χ)=0及f〞(χ)+f(χ)=2eχ.(Ⅰ)求f(χ)的表达式;(Ⅱ)求曲线y=f(χ2)∫0χf(-t2)dt的拐点.
(1999年)记行列式为f(χ),则方程f(χ)=0的根的个数为
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程=0.
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
设向量组α1=[α11,α21,…,αn1]T,α2=[α12,α22,…,αn2]T,…,αs=[α1s,α2s,…,αns]T,证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
随机试题
高效便民是行政管理的基本要求,是服务型政府的具体体现。下列选项中体现了这一要求的是()。
在20世纪80年代,日本临时教育审议会提出的适应时代发展的教育改革基本原则包括()
关于主动脉粥样硬化的叙述中,哪项是错误的:
选择固定桥基牙时,哪一项最不重要
应用效果最可靠的灭菌方法是()
钢筋混凝土和预应力混凝土沉入桩,分不同桩径按桩身的长度,以m为单位计量,计价中包括()。
项目投资估算中的基本预备费一般由下列内容构成()。
关于斜拉桥叙述不正确的是()。
某企业购入某存货A,其购买数量为2000件,每件售价10元,期间还发生装卸费300元,运输费200元,那么,A存货的单位成本应为()元。
在软件开发中,需求分析阶段产生的主要文档是( )。
最新回复
(
0
)