首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2011年)设A为3阶实对称矩阵,A的秩为2,且 (Ⅰ)求A的所有特征值与特征向量. (Ⅱ)求矩阵A.
(2011年)设A为3阶实对称矩阵,A的秩为2,且 (Ⅰ)求A的所有特征值与特征向量. (Ⅱ)求矩阵A.
admin
2016-05-30
70
问题
(2011年)设A为3阶实对称矩阵,A的秩为2,且
(Ⅰ)求A的所有特征值与特征向量.
(Ⅱ)求矩阵A.
选项
答案
(Ⅰ)由于A的秩为2,故0是A的一个特征值.由题设可得 [*] 所以,-1是A的一个特征值,且属于-1的特征向量为k
1
(1,0,-1)
T
,k
1
为任意非零常数;1也是A的一个特征值,且属于1的特征向量为k
2
(1,0,1)
T
,k
2
为任意非零常数. 设χ=(χ
1
,χ
2
,χ
3
)
T
为A的属于0的特征向量,由于A为实对称矩阵,A的属于不同特征值的特征向量相互正交,则 [*] 解得上面齐次线性方程组的基础解系为(0,1,0)
T
,于是属于0的特征向量为k
3
(0,1,0)
T
,其中k
3
为任意非零常数. [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/j734777K
0
考研数学二
相关试题推荐
设A,B为三阶矩阵,A~B,λ1=-1,λ2=1为矩阵A的两个特征值,又|B-1|=则=________
设向量组α1,α2,α3线性无关,β1不可由α1,α2,α3线性表示,而β2可由α1,α2,α3线性表示,则下列结论正确的是().
已知α1=(1,2,3)T,α2=(-2,1,-1)T和β1=(4,-2,α)T,β2=(7,b,4)T是等价向量组,则参数a,b应分别为()。
A为四阶方阵,方程组AX=0的通解为x=k1(1,0,1,0)T+k2(0,0,0,1)T,A的伴随矩阵为A*,则秩(A*)*=().
以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的微分方程是________.
设y1(x),y2(x)为二阶齐次线性微分方程y”+P(x)y’+q(x)y=0的两个特解,y1≠0,y2≠0,则y=c1y1(x)+c2y2(x)(其中c1,c2为任意常数)为该方程通解的充要条件为().
设有密度为u=1的均匀正方体V:0≤x≤a,0≤y≤a,0≤z≤a,设直线L过坐标原点且方向向量s的方向余弦为cosα,cosβ,cosγ,求V对L的转动惯量,并求当{cosα,cosβ,cosγ}满足什么条件时,此转动惯量有最大、最小值.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
随机试题
A.戒烟B.合理营养C.早期发现、早期治疗D.控制环境污染E.预防复发和转移肿瘤的二级预防是
最早应用于CT检查的部位是
镇上基本医疗保险费用的缴付方式主要为
A、病变组织病理检查B、大便潜血检查C、B超和CTD、CEA(血清癌胚抗原测定)E、内镜检查可帮助了解腹部肿块、淋巴结肿大及腹部有无转移
砌块通常按其所用主要原料及生产工艺分类,主要有()。
严重心理问题的病程是()。
Allofusneedfriendship.Theunderstanding【M1】______betweentwofriendsmeanbothofthemhavesimilar【M2】______idea
哥兰伯格每日通报的一篇社论声称,哥兰伯格的投票者会普遍欢迎某前控制市议会的政党下台。该社论基于最近的一次调查报告发表了这个声明,调查报告显示有59%的哥兰伯格在册选民认为该政党在后年的市议会选举中肯定下台。下面哪一条原则如果正确,能最有力地为这篇社论的结论
Andspeakingoffreedom,isnottheauthorfree,asfewmenarefree?Ishenotsecure,asfewmenaresecure?Thetoolsofhis
Lookingtoimproveyourlanguageskills,butyoudon’thavethetimetogooverseastoattendschool?Moreandmoreuniversities
最新回复
(
0
)