首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续,在(0,1)内f(x)>0 且xf’(x)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=x(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
设f(x)在[0,1]连续,在(0,1)内f(x)>0 且xf’(x)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=x(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
admin
2018-11-21
73
问题
设f(x)在[0,1]连续,在(0,1)内f(x)>0 且xf’(x)=f(x)+
ax
2
,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=x(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
选项
答案
(Ⅰ)首先由xf’(x)=f(x)+[*]ax
2
,f(x)>0(x∈(0,1))求出f(x).这是求解一阶线性方程f’(x)一[*](取其中一个),得 [*]ax
2
+Cx,x∈[0,1],其中C为任意常数使得f(x)>0 (x∈(0,1)). (Ⅱ)确定C与a的关系使得由y=f(x)与x=1,y=0围成平面图形的面积为2. 由已知条件得2=∫
0
1
[*],则C=4一a.因此,f(x)=[*]ax
2
+(4一a)x,其中a为任意常数使得f(x)>0(x∈(0,1)). [*].又f’(x)=3ax+4一a,由此易知一8≤a≤4时f(x)>0(x∈(0,1)). (Ⅲ)求旋转体的体积. V(a)=π∫
0
1
f
2
(x)dx=π∫
0
1
[*]ax
2
+(4—a)x]
2
dx =π∫
0
1
[[*]x
4
+x
2
—3x
3
)a
2
+(12x
3
—8x
2
)a+16x
2
]dx=π([*]). (Ⅳ)求V(a)的最小值点.由于 [*] 则当a=一5时f(x)>0(x∈(0,1)),旋转体体积取最小值.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/epg4777K
0
考研数学一
相关试题推荐
曲线y=有()渐近线.
设L为椭圆=1,其周长为π,则(2xy+3x2+5y2)ds=___________.
设=().
曲面z—y—lnx+lnz=0与平面x+y一2z=1垂直的法线方程为__________.
设X1,X2,…,Xn是取自总体X的简单随机样本,X的概率密度函数为f(x)=,-∞<x<+∞,则λ的最大似然估计量=______。
已知曲线L为圆x2+y2=a2在第一象限的部分,则=________。
过椭圆3x2+2xy+3y2=1上任意一点作椭圆的切线,试求该切线与两坐标轴所围成的三角形面积的最小值。
已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4可以经过正交变换化为椭圆柱面方程η2+4ξ2=4,求a,b的值和正交矩阵P。
随机试题
设计和维持一种有助于提高集体活动效果的组织结构的活动过程是()
急性化脓性骨髓炎应与下列哪些疾病鉴别
化脓性关节炎早期诊断中,最有价值的方法是
以下公式表示试算平衡关系,正确的是()。
唐代茶圣陆羽的《茶经》是中国也是世界第一部茶叶科学专著。()
在当代中国,发展先进文化,就是()。
设f(x)在区间[a,b]上可导,且满足求证:至少存在一点ξ∈(a,b)使得f(ξ)=-f’(ξ).
函数y=y(x)由方程cos(x2+y2)+ex一x2y=0所确定,求
A.daydreamB.disagreementC.factuallyD.ifE.inevitableF.inseparableG.laysH.makingI.perspectiveJ.residesK.
WhydoweinvestsomuchhopeinnewtechnologyandwhyarewesodisappointedwhentheNextBigThingturnsouttobejustane
最新回复
(
0
)