首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组 ① 与方程 x1+2x2+x3=a-1 ② 有公共解,求a的值及所有公共解.
设线性方程组 ① 与方程 x1+2x2+x3=a-1 ② 有公共解,求a的值及所有公共解.
admin
2014-01-26
106
问题
设线性方程组
①
与方程
x
1
+2x
2
+x
3
=a-1 ②
有公共解,求a的值及所有公共解.
选项
答案
[详解1] 将①与②联立得非齐次线性方程组 [*]③ 若此非齐次线性方程组有解,则①与②有公共解,且③的解即为所求全部公共解.对③的增广矩阵[*]作初等行变换得 [*] 于是 当a=1时,有[*],方程组③有解,即①与②有公共解,其全部公共解即为③的通解,此时 [*] 方程组③为齐次线性方程组,其基础解系为[*], 所以,①与②的全部公共解为k[*],k为任意常数. 当a=2时,有[*],方程组③有唯一解,此时 [*] 故方程组③的解为[*], 即①与②有唯一公共解为[*]。 [详解2] 方程组的系数行列式为 [*] 当a≠1且a≠2时,①只有唯一零解,但它不是②的解,此时①与②没有公共解. 当a=1时,[*],k为任意常数. 将其代入方程x
1
+2x
2
+x
3
=1—1知,k[*]也是②的解. 所以,①与②的全部公共解为k[*],k为任意常数. 当a=2时,[*],k为任意常数, 将其代入方程x
1
+2x
2
+x
3
=2—1,得k=-1. 即①与②有唯一公共解为[*]
解析
两个方程有公共解就是将它们联立起来的非齐次线性方程组有解.
转载请注明原文地址:https://www.kaotiyun.com/show/em34777K
0
考研数学二
相关试题推荐
已知向量组(Ⅰ):α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.证明:向量组(Ⅳ):α1,α2,α3,α5-α4的秩为4.
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAN=0,必有()
[2008年]设X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本,记求E(T)(原题为证明T是μ2的无偏估计量);
(89年)求微分方程y〞+5y′+6y=2e-χ的通解.
(99年)设生产某种产品必须投入两种要素,χ1和χ2分别为两要素的投入量,Q为产出量;若生产函数为Q=2χ1αχ2β,其中α,β为正常数,且α+β=1,假设两种要素的价格分别为p1和p2,试问:当产量为12时,两要素各投入多少可以使得投入总费用最小?
(97年)设3阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(一1,-1,1)T,α2=1,-2,-1)T.(1)求A的属于特征值3的特征向量;(2)求矩阵A.
设矩阵A=,β=,且方程组Ax=β无解.(Ⅰ)求a的值;(Ⅱ)求方程组ATAx=ATβ的通解.
[2018年]已知总体X的密度函数为X1,X2,…,Xn为来自总体X的简单随机样本,σ为大于0的参数,记σ的最大似然估计量为求
设线性方程组与方程(Ⅱ):x1+2x2+x3=a-1有公共解,求a的值及所有公共解.
[2008年]设n元线性方程组AX=b,其中证明行列式|A|=(n+1)an;
随机试题
如何正确理解马克思主义的科学内涵?
在压裂过程中用于支撑和充填油层裂缝的固体颗粒称为充填剂。()
下列关于视杆细胞的叙述,错误的是
医疗事故争议由双方当事人自行协商解决的,医疗机构应当自协商解决之日起在法定期限内向所在地卫生行政机关作出书面报告,其法定期限是
借款人申请贷款,应当具备产品有市场,生产经营有效益,不挤占挪用信贷资金,恪守信用等基本条件,并且应符合一定要求的是()。
出口配额许可证管理是通过直接分配的方式,由国务院主管部门或者国务院有关部门在各自的职责范围内根据申请者需求并结合其进出口实绩、能力等条件,按照( )原则进行分配。
会计核算的一般原则中,( )是指企业会计提供的信息应当能够反映企业财务状况。经营成果和现金流量情况,以满足会计信息使用者的需要。
企业存放在银行的银行本票存款,应通过()科目进行核算。
邓小平提出,我国社会主义法制建设的要求是()。
下列关于RPR技术的描述中,错误的是()。
最新回复
(
0
)