首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论方程axex+b=0(a>0)实根的情况.
讨论方程axex+b=0(a>0)实根的情况.
admin
2015-08-14
60
问题
讨论方程axe
x
+b=0(a>0)实根的情况.
选项
答案
令f(x)=axe
x
+b,[*].求函数f(x)=axe
x
+b的极值,并讨论极值的符号及参数b的值. f’(x)=ae
x
+axe
x
=ae
x
(1+x),驻点为x=一1, f"(x)=2ae
x
+axe
x
=ae
x
(2+x),f"(一1)>0,所以,x=一1是函数的极小值点,极小值为f(-1)=[*] (1)[*]函数f(x)无零点,即方程无实根; (2)[*]函数f(x)有一个零点,即方程有一个实根; (3)[*]函数f(x)有两个不同的零点,即方程有两个不同的实根; (4)当b≤0时,函数f(x)有一个零点,即方程有一个实根.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/dS34777K
0
考研数学二
相关试题推荐
设η为非零向量,A=η为方程组AX=0的解,则a=________,方程组的通解为________.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ1-2ξ2-ξ3,(1)求矩阵A的全部特征值;(2)求|A*+2E|.
(Ⅰ)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义;(Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在,且=f’x(x0,y0)△x+f’y(x0,
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12-y22-y32,又A*α=α,其中α=(1,1,﹣1)T.(Ⅰ)求矩阵A;(Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准形.
设3阶实对称矩阵A满足A2=2A,已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为λy22+λy32(λ≠0),其中Q=(b>0,c>0).求a,b,c的值;
设A是3阶实对称矩阵,二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22-y32,A*是A的伴随矩阵,则二次型g(x1,x2,x3)-xTA*x的规范形为()
设函数f(x)是以T为周期的连续函数.(Ⅰ)证明:∫0x(t)dt可以表示成一个以T为周期的连续函数与kx之和,并求常数k;(Ⅱ)计算∫0xf(t)dt.
设随机变量X的概率密度为,其中a,b为常数.记Φ(x)为N(0,1)的分布函数.若在x=1处f(x)取得最大值,则P{1-<X<1+}=()
证明:奇次多项式p(x)=a0x2n+1+a1x2n+….+a2n+1(a0≠0)至少存在一个零点。
设常数k>0,函数在(0,+∞)内零点个数为________。
随机试题
某小学有大批的学生发生不明原因的腹泻,为了寻找病因及流行的线索。若证实导致这次腹泻的病因,应具有
某乡的交警对路过的三轮车车主许某实行行政处罚,认为其违反了交通管理法规,但他只罚了许某300元钱,并未作出处罚决定书。但许某当时有几个同伴都在场。许某能向法院起诉吗?()
依据澳门特别行政区基本法,下列选项中哪个是担任澳门特别行政区立法会议员应当具备的条件?()
某地下车库位于地下活动区,平面面积为4000m2,顶板上覆土层厚度为1m,其重度γ=18kN/m3,公共活动区可变荷载为10kPa。顶板厚度为30cm,其顶面标高与地面标高相等;底板厚度50cm,钢筋混凝土重度取为25kN/m3。地下车库的侧墙及梁柱总重为
一个高级居住区附近建设了一个工厂,该居住区的房地产价值下降,这就是一种()。
以下不属于公告栏广告发布技巧的是()。
下列关于局域网设备的描述中,错误的是()。
Accordingtothepassage,howmanypeopleintheworldcanNOTgetenoughfoodtobehealthy?
American【T1】______willnotreturntothemoonasplannedifUSCongresspassesPresidentObama’sproposedbudget.Obama’sbu
A、Hehastoomuchtimetokill.B、Hemetnotrafficjamthatday.C、Hewantstotakearestinhiscar.D、Hiscardoesn’twork.
最新回复
(
0
)