首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
admin
2022-04-02
369
问题
设齐次线性方程组
其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
选项
答案
D=[*]=[a+(n-1)b](a-b)
n-1
. (1)当a≠b,a≠(1-n)b时,方程组只有零解; (2)当a=b时,方程组的同解方程组为x
1
,x
2
,…,x
n
=0,其通解为x=k
1
(-1,1,0,…,0)
T
+k
2
(-1,0,1,…,0)
T
+…+k
n-1
(-1,0,…,0,1)
T
(k
1
,k
2
,…,k
n-1
为任意常数); (3)令A=[*]当a=(1-n)b时,r(A)=n-1,显然(1,1,…,1)
T
为方程组的一个解,故方程组的通解为X=k(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/11R4777K
0
考研数学三
相关试题推荐
对三阶矩阵A的伴随矩阵A*先交换第一行与第三行,然后将第二列的一2倍加到第三列得一E,且|A|>0,则A等于().
设有矩阵Am×n,Bn×m,已知En一AB可逆,证明:En—BA可逆,且(En—BA)-1=En+B(Em一AB)-1A.
设矩阵A=,则A与B().
设A,B为三阶相似矩阵,且|2E+A|=0,λ1=1,λ2=-1为B的两个特征值,则行列式|A+2AB|=________。
构造齐次方程组,使得η1=(1,1,0,一1)T,η2=(0,2,1,1)T构成它的基础解系.
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
设A是n阶实对称矩阵,证明:(1)存在实数c,使对一切X∈Rn,有|χTAχ|≤cχTχ.(2)必可找到一个数a,使A+aE为对称正定矩阵.
已知三元二次型XTAX经正交变换化为2y12-y22-y32,又知矩阵B满足矩阵方程BA-1=2AB+4E,且A*α=α,其中α=[1,1,-1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A的特征值和特征向量.
随机试题
【背景资料】某工程,施工单位按招标文件中提供的工程量清单作出报价(见下表)。施工合同约定:工程预付款为合同总价的20%,从工程进度款累计总额达到合同总价10%的月份开始,按当月工程进度款的30%扣回,扣完为止;施工过程中发生的设计变更,采用以直接
在强式有效市场中,下列描述正确的是()。Ⅰ.任何人都不可能通过对公开或内幕信息的分析获取额外收益Ⅱ.证券价格总是能及时充分地反映所有相关信息Ⅲ.每一位投资者都掌握了有关证券产品的所有公开可得信息Ⅳ.基本面分析是无效的
腹大坚满,青筋显露,胁下癜积,痛如针刺,面色晦暗黧黑,胸臂出现血痣或蟹爪纹,口干不欲饮,舌紫黯,脉细涩,宜选用
关于子宫内膜异位症的处理与健康指导,不正确的是
王某公文包内有合同、现金、银行卡等各种证件,一天王某不小心把公文包丢失了,有人打电话说可以归还。但是让他支付一定报酬,对此谈谈你的观点。
中国是个太阳能资源非常丰富的国家,96%的地区有可利用的太阳能资源,绿色、节能的太阳能热水器深受不同地域消费者的青睐。然而,一项对24个省市太阳能热水器使用状况的调查,却显示出不容乐观的结果,40.87%的太阳能热水器一到冬天就无法使用,66.62%的消费
如果需要组建一个办公室局域网,其中有14台个人计算机和2台服务器,并且要与公司的局域网交换机连接,那么性价比最优的连接设备是______。
Whatisthetotalnumberofdifferent5-digitintegersthatcontainallofthedigits2,5,4,3,7andinwhichboththeunits
Whatarethespeakerstalkingabout?
A、Thewomanshouldexplaintoherprofessor.B、Thewomandeservesazeroforthefieldtrip.C、Thewomanisrighttobeangrywi
最新回复
(
0
)