首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则
admin
2012-02-25
117
问题
设X
1
和X
2
是任意两个相互独立的连续型随机变量,它们的概率密度分别为f
1
(x)与f
2
(x),分布函数分别为F
1
(x)与F
2
(x),则
选项
A、f
1
(x)+f
2
(x)必为某一随机变量的概率密度.
B、f
1
(x)f
2
(x)必为某一随机变量的概率密度.
C、F
1
(x)+F
2
(x)必为某一随机变量的分布函数.
D、F
1
(x)F
2
(x)必为某一随机变量的分布函数.
答案
D
解析
若令X=max(X
1
,X
2
),而X
i
-fX
i
(x),i=1,2,则X的分布函数F(x)恰是FX
1
(x)FX
2
(x).
F(x)=P{max(X
1
,X
2
)≤x}=P{X
1
≤x,X
2
≤x}
=P{X
1
≤x}P{X
2
≤x}=F
1
(x)F
2
(x).
转载请注明原文地址:https://www.kaotiyun.com/show/cn54777K
0
考研数学一
相关试题推荐
设α1,α2,α3,α4为线性方程组Ax=0的一个基础解系,β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,试问实数t满足什么关系时,β1,β2,β3,β4也为Ax=0的一个基础解系。
(2009年试题,三)求极限
(1987年)求微分方程y〞+2y′+y=χeχ的通解.
设函数z=f(x,y)的全微分为dz=xdx+ydy,则点(0,0)
(15年)设函数y=y(x)是微分方程y"+y’-2y=0的解,且在x=0处y(x)取得极值3,则y(x)=______.
设3阶矩阵A的特征值为2,一2,1,B=A2一A+E,其中E为3阶单位矩阵,则行列式|B|=___________.
已知y1=xex+e2x,y2=xex+e一x,y3=xex+e2x一e一x是某二阶线性非齐次微分方程的三个解,求此微分方程.
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T,问:(1)a,b取何值时,β不能由α1,α2,α3线性表示?(2)a,b取何值时,β可由口α1,α2,α3线性表示?并
[2015年]设矩阵.若集合Ω={1,2},则线性方程组AX=b有无穷多解的充分必要条件为().
((13年)有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m.根据设汁要求.当以3m3/min的速率向容器内注入液体时,液面的面积将以πm3/mjn的速率均匀扩大(假设注入液体前,容器内无液
随机试题
胃腺壁细胞分泌()。
呼吸频率从12次/分增到24次/分,潮气量从500ml减少到250ml,则
厥证的基本病理是()
_________是指合同争议当事人,请求法院通过审判保护自己合法权益的行为。()
2009年4月,甲公司因欠乙公司货款100万元不能按时偿还,向乙公司请求延期至2010年4月1日还款,并愿意以本公司所有的3台大型设备进行抵押和1辆轿车进行质押,为其履行还款义务提供担保。乙公司同意了甲公司的请求,并与甲公司订立了书面抵押和质押合同。甲公司
市场经济与计划经济相对应,都属于资源配置方式的范畴。()
2012某省规模以上工业增加值10875亿元,比上年增长7.1%,月度增速从1--2月的2.9%回升到10--12月的10%以上。大型、中型和小微型企业增加值分别为3074、3217和4584亿元,比上年分别增长8.2%、6.8%和6.7%。20
下列各种人寿保险中,不能进行保单贷款的是()。
企业在进行追加筹资决策时,应使用()。
______(老实说),teachersarealsounderenormouspressure.
最新回复
(
0
)