首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。 求方程f(x1,x2,x3)=0的解。
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。 求方程f(x1,x2,x3)=0的解。
admin
2019-01-23
53
问题
已知二次型f(x
1
,x
2
,x
3
)=(1—a)x
1
2
+(1—a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2。
求方程f(x
1
,x
2
,x
3
)=0的解。
选项
答案
由f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+2x
3
2
+2x
1
2
=(x
1
+x
2
)
2
+2x
3
2
=0,得[*] 所以方程f(x
1
,x
2
,x
3
)=0的通解为k(1,一1,0)
T
,其中k为任意常数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/amP4777K
0
考研数学三
相关试题推荐
判定级数的敛散性.
设A是阶反对称阵,B是主对角元均大于零的n阶对角阵,证明:A+B是可逆阵.
设函数f(x)在区间[a,b]上连续,且区域D={(x,y)|a≤x≤b,a≤y≤b},证明:[∫abf(x)dx]2(b—a)∫abf2(x)dx.
计算二重积分I=||x+y|一2|dσ,其中积分区域为D={(x,y)|0≤x≤2,一2≤y≤2}.
设随机变量X与Y相互独立,且P(X=1)=P(X=一1)=,令Z=XY,证明X,Y,Z两两独立,但不相互独立.
设f’(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f’(a)f’(b)>0,试证:至少存在一点ξ∈(a,b),使f"(ξ)=0.
设某商品的最大需求量为1200件,该商品的需求函数Q=Q(p),需求弹性η=(η>0),p为单价(万元).(1)求需求函数的表达式;(2)求p=100厅元时的边际收益,并说明其经济意义.
设三阶实对称矩阵A的特征值分别为0,1,1,α1=是A的两个不同的特征向量,且A(α1+α2)=α2.(1)求参数a的值;(2)求方程组Ax=α2的通解;(3)求矩阵A;(4)求正交矩阵Q,使得QTAQ为对角矩阵.
设级数都发散,则().
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
随机试题
下列关于非正常申请专利行为的说法正确的是?
患者,男,65岁,高血压病史10年,近日被诊断为肺结核,降血压药维拉帕米与以下抗结核药同服需增加剂量的是()。
经皮肝穿刺胆道造影术后最常见的并发症是
国境卫生检疫机关发现检疫传染病或者疑似检疫传染病时,必须用最快的方法报告国务院卫生行政部门,最迟不行超过24小时。( )
根据我国《刑法》的规定,对于个人犯欺诈发行股票、债券罪的,并处或单处非法募集资金金额()的罚金。
国务院证券监督管理机构和()应当建立证券公司的有关情况通报机制。
甲公司2×17年年度财务报告于2×18年3月31日批准报出,甲公司因违约于2×17年10月被乙公司起诉,该项诉讼在2×17年12月31日尚未判决,甲公司认为很可能败诉,赔偿的金额为100万元,将其确认为预计负债。2×18年3月12日,法院判决甲公司需要赔偿
质量改进遵循PDCA循环的原则,包括()阶段。
A.It’sreallyfamilyfirstB.therealworkwillstartwhentheywalkoffthestageC.thenitwasjustapenaltyD.becauseI’
Twomajorreasonshavecausedthis______:lackofinteractionandcommunicationwiththebusinessworld,andmissingskillsamon
最新回复
(
0
)