首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.
设4元线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.
admin
2017-04-23
121
问题
设4元线性方程组(Ⅰ)为
又已知某齐次线性方程组(Ⅱ)的通解为k
1
(0,1,1,0)+k
2
(一1,2,2,1).
(1)求线性方程组(Ⅰ)的基础解系;
(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.
选项
答案
(1)由系数矩阵的初等行变换:A=[*](x
3
,x
4
任意),令x
3
=1,x
4
=0,得ξ
1
=(0,0,1,0)
T
;令x
3
=0,x
4
=1,得ξ
2
=(一1,1,0,1)
T
,则ξ
1
,ξ
2
就是(Ⅰ)的一个基础解系. (2)若x是(Ⅰ)和(Ⅱ)的公共解,则存在常数λ
1
,λ
2
,λ
3
,λ
4
,使 [*] 由此得λ
1
,λ
2
,λ
3
,λ
4
满足齐次线性方程组 [*] 解此齐次线性方程组,得其参数形式的通解为 λ
1
=C,λ
2
=C,λ
3
=一C,λ
4
=C,其中C为任意常数.故(Ⅰ)和(Ⅱ)有非零公共解,全部非零公共解为C(0,0,1,0)
T
+C(一1,1,0,1)
T
=C(一1,1,1,1)
T
,其中C为任意非零常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Zkt4777K
0
考研数学二
相关试题推荐
在椭圆x2+4y2=4上求一点,使其到直线2x+3y-6=0的距离最短。
计算极限.
设,I2=cos(x2+y2)dδ,I3=cos(x2+y2)2dδ,其中D={(x,y)|x2+y2≤1},则________。
设可微函数f(x,y)在点(x0,y0)取得极小值,则下列结论正确的是________。
设f(u)可导,y=f(x2)在x0=-1处取得增量△x=0.05时,函数增量△y的线性部分为0.15,则f’(1)=________.
求下列微分方程的通解。
求曲线y=x2-2x与直线y=0,x=1,x=3所围成区域的面积S,并求该区域绕y轴旋转一周所得旋转体的体积V。
求下列极限:
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
有一平底容器,其内侧壁是由曲线x=ψ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图1—6—1),容器的底面圆的半径为2m.根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体).
随机试题
脱乙烷塔是()回收的关键设备之一。
患者腹痛下利,脉微肢冷,首选方剂
女,30岁,发育良好,夫妇同居,婚后3年未孕,基础体温双相,内膜活检见分泌期图像,输卵管通畅,男子精液检查常规示正常。进一步应选择适当日期作下列何项试验:
疾病对患者的意义和影响主要是
小儿急性肾小球肾炎起病前常有皮肤感染,其前驱期多为
A.彼此信任,互相协作B.关心,爱护,尊重患者,保护患者隐私C.努力消除歧视,促进医疗卫生资源的公平分配D.努力钻研业务,更新知识,提高专业技术水平E.提高道德修养水平医师对患者应承担的责任是()
按运动功能的发育规律,小儿起坐的年龄一般为
“6C”标准原则的内容不包括()。
某外国人携带文物出境,下列命题正确的是()。
Franklyspeaking,I’dratheryou______anythingaboutitforthetimebeing.
最新回复
(
0
)