首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT,试求: A2;
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT,试求: A2;
admin
2016-01-11
98
问题
设向量α=(a
1
,a
2
,…,a
n
)
T
,β=(b
1
,b
2
,…,b
n
)
T
都是非零向量,且满足条件α
T
β=0.记n阶矩阵A=αβ
T
,试求:
A
2
;
选项
答案
由A=αβ
T
和α
T
β=0,有A
2
=AA=(αβ
T
)(αβ
T
)=α(β
T
α)β
T
=(β
T
α)αβ
T
=(α
T
β)
T
αβ
T
=O,即A
2
为n阶零矩阵.
解析
本题主要考查矩阵的特征值与特征向量的求法和矩阵的运算.利用矩阵乘法的结合律以及α
T
β为一数值易计算出A
2
,利用(1)的结论及特征值的定义即可求出A的特征值.在求出了A的特征值之后,便可解出全部特征向量.
转载请注明原文地址:https://www.kaotiyun.com/show/Ye34777K
0
考研数学二
相关试题推荐
设3阶实对称矩阵A满足A2=2A,已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为λy22+λy32(λ≠0),其中Q=(b>0,c>0).求a,b,c的值;
设相似.求一个可逆矩阵P,使得P-1AP=B;
设A=(β-α1-2α2-3α3,α1,α2,α3),α1,α2,α3,β均是3维列向量,则方程组Ax=β有特解为________.
设A是3阶实对称矩阵,二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22-y32,A*是A的伴随矩阵,则二次型g(x1,x2,x3)-xTA*x的规范形为()
设矩阵满足CTAC=B.对上题中的A,求可逆矩阵P,使得PTBP=A.
设矩阵满足CTAC=B.求正交矩阵Q,使得Q-1AQ=A;
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).求A的特征值和特征向量;
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.求正交变换x=Qy,将二次型f(x1,x2,x3)=xTAx化为标准形;
设向量a=(1,1,-1)T是的一个特征向量.A是否相似于对角矩阵?说明理由.
随机试题
下列关于衰退型种群年龄结构特征的叙述,正确的是()
慢性肺源性心脏病患者,近一周来咳嗽加剧,双肺有湿啰音,双下肢水肿,血WBC及中性分类均增高。动脉血气分析:pH7.30,PaCO280mmHg,PaO230mmHg,BE+4.0mmol/L,HCO3—:34mmol/L。该患者目前不存在
腊肠犬,10岁,头颈僵直,耳竖起,鼻尖抵地,运步小心,触诊颈部敏感。该犬最可能患有()
渗透性利尿的作用机制是
正常恶露持续
奶瓶龋好发的牙面是
某企业于1998年11月以出让方式取得某一商业用地40年使用权,地价为2000元/m2。假设土地还原率为6%,在其他条件不变的情况下,则该宗地2004年11月的剩余年期地价为()元/m2。
传统工业的生产活动是以( )为特征的不可持续的发展模式。
下列关于调解建设工程纠纷时,调解人的表述中错误的说法有( )。
Acertainjarcontains100jellybeans:50white,30green,10yellow,5red,4purple,and1black.Ifajellybeanistobech
最新回复
(
0
)