首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明:BA的行向量也是齐次方程组Cx=0的基础解系.
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明:BA的行向量也是齐次方程组Cx=0的基础解系.
admin
2016-03-05
78
问题
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明:BA的行向量也是齐次方程组Cx=0的基础解系.
选项
答案
由已知可得A的行向量是C
x
=0的解,即CA
T
=O.则C(BA)
T
=CA
T
B
T
=OB
T
=0.可见BA的行向量是方程组Cx=0的解.由于A的行向量是基础解系,所以A的行向量线性无关,于是m=r(A)=n—r(C).又因为B是可逆矩阵,r(BA)=r(A)=m=n—r(C),所以鲋的行向量线性无关,其向量个数正好是n—r(C),因此是方程组Cx=0的基础解系.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Ya34777K
0
考研数学二
相关试题推荐
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.k为何值时,A*+kE是正定矩阵?
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.求正交变换x=Qy,将二次型f(x1,x2,x3)=xTAx化为标准形;
设f(x)在[0,1]上二阶可导,f(0)=0,且证明:存在一点η∈(0,1),使得f”η)=2.
设随机变量X与Y相互独立,X服从参数为λ(λ>0)的指数分布,Y的概率分布为P{Y=-1)=1/3,P{Y=1}=2/3,记Z=XY·求Z的概率密度fz(z).
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=1,且a1+2a2=a3,A*是A的伴随矩阵.求正交变换x=Qy化二次型f(x1,x2,x3)=xTAx为标准形;
求一条平行于x轴的直线,使它与y=sinx(0≤x≤3π)相交于四点,并使该直线与y=sinx围成的三个图形面积之和最小.
n维向量α=1/2.0,…,0,1/2)T,A=E—4ααT,β=(1,1,…,I)T,则Aβ的长度为
设向量组α1,α2,α3线性无关,β1不可由α1,α2,α3线性表示,而β2可由α1,α2,α3线性表示,则下列结论正确的是().
随机试题
符合探视制度的做法是
()是由梁和钢架相结合的体系,它是预应力混凝土结构采用悬臂施工法而发展起来的一种新体系。
规费是指政府和有关权力部门规定必须缴纳的费用,包括工程排污费,工程定额测定费,(),住房公积金和危险作业意外伤害保险。
根据以下资料,回答下列小题2013年上半年,邮政企业和全国规模以上快递服务企业业务收入(不包括邮政储蓄银行直接营业收入,以下简称邮政全行业)累计完成1224.9亿元,同比增长25.8%;业务总量累计完成1215.1亿元,同比增长30.1%。
安排宴请活动时,可根据宴请的目的和宾客的社会地位、职务身份来确定宴请的()。
常用的数据交换方式有()。
皮亚杰的研究表明,感知运动阶段的一个显著标志是儿童渐渐获得()。
以下所列的各函数首部中,正确的是______。
若有以下程序main(){inta=-2,b=0;while(a++)++b:printf("%d,%d\n",a,b);}则程序的输出结果是
ThestandardofficialretirementagetoqualifyforapublicpensioninmostOECDcountriesiscurrently65.Thechief【C1】______
最新回复
(
0
)