首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知 a1=[1,3,5,一1]T, a2=[2,7,a,4]T, a3=[5,17,一1,7]T. (Ⅰ)若a1,a2,a3线性相关,求a的值; (Ⅱ)当a=3时,求与a1,a2,a3都正交的非零向量a4;
已知 a1=[1,3,5,一1]T, a2=[2,7,a,4]T, a3=[5,17,一1,7]T. (Ⅰ)若a1,a2,a3线性相关,求a的值; (Ⅱ)当a=3时,求与a1,a2,a3都正交的非零向量a4;
admin
2020-03-15
77
问题
已知
a
1
=[1,3,5,一1]
T
, a
2
=[2,7,a,4]
T
, a
3
=[5,17,一1,7]
T
.
(Ⅰ)若a
1
,a
2
,a
3
线性相关,求a的值;
(Ⅱ)当a=3时,求与a
1
,a
2
,a
3
都正交的非零向量a
4
;
(Ⅲ)当a=3时,证明a
1
,a
2
,a
3
,a
4
可表示任一个四维列向量.
选项
答案
(Ⅰ)利用向量组线性相关、线性无关的定义求之; (Ⅱ)按齐次线性方程组求解的方法求之. (Ⅲ)归结证明对任意四维向量α,方程组x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α总有解. 解 (Ⅰ)由α
1
,α
2
,α
3
线性相关,得秩(α
1
,α
2
,α
3
)<3.由于 [*] 所以a=一3. (Ⅱ)设α
4
=[x
1
,x
2
,x
3
,x
4
]
T
,则有 <α
1
,α
4
>=0, <α
2
,α
4
>=0, <α
3
,α
4
>=0, 即 [*] 而 [*] 所以 X=[x
1
,x
2
,x
3
,x
4
]
T
=α
4
=k[19,一6,0,1], 其中k≠0为任意常数. (Ⅲ)由于[*] 所以x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α恒有解,即任一四维列向量必可由α
1
,α
2
,α
3
,α
4
线性表出. 或由(Ⅰ)知α=3时,α
1
,α
2
,α
3
必线性无关,那么如果 k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
α
4
=0, 用α
4
T
左乘上式两端并利用 α
4
T
α
1
=α
4
T
α
2
=α
4
T
α
3
=0, 有k
4
α
4
T
α
4
=0,故必有k
4
=0.于是 k
1
α
1
+k
2
α
2
+k
3
α
3
=0, 从而α
1
,α
2
,α
3
,α
4
必线性无关.而5个四维向量必线性相关,因此任一个四维列向量都可由α
1
,α
2
,α
3
,α
4
线性表出.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/XpA4777K
0
考研数学二
相关试题推荐
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,—1,—3)T,α4=(0,0,3,3)T线性表出。求向量组α1,α2,α3,α4的一个极大线性无关组,并将其余向量用该极大线性无关组
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。求可逆矩阵P使得P—1AP为对角矩阵。
已知α1=(—1,1,t,4)T,α2=(—2,1,5,t)T,α3=(t,2,10,1)T分别是四阶方阵A的三个不同的特征值对应的特征向量,则()
[2007年]已知函数f(u)具有二阶导数,且f'(0)=l,函数y=y(x)由方程y一xey-1=1所确定.设z=f(lny—sinx),求.
(2006年试题,一)广义积分
(2008年)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=[α1,α2,α3],求P-1AP.
设函数f(x)在[1,+∞]上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体的体积为V(t)=[t2f(t)一f(1)]试求y=f(x)所应满足的微分方程,并求该微分方程满足条件y|x=2=的
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点试求曲线L的方程;
设有微分方程y’-2y=ψ(x),其中试求在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,满足条件y(0)=0.
求函数的间断点并指出其类型.
随机试题
下列属于建设性冲突特点的是()
认为社会分层是社会不平等的体现,在各个时代、各个社会中普遍存在是因为社会运行过程的需要的是()
明代戏曲家汤显祖的代表作之一是()
对老年复发性腹股沟疝最好的手术方法是
A.丙酸睾酮B.输血C.骨髓移植D.抗生素E.免疫抑制剂治疗再障的最佳方法为
【案情】陈某转让一辆中巴车给王某但未办过户。王某为了运营,与明星汽运公司签订合同,明确挂靠该公司,王某每月向该公司交纳500元,该公司为王某代交规费、代办各种运营手续、保险等。明星汽运公司依约代王某向鸿运保险公司支付了该车的交强险费用。
利息是______这种生产要素的价格。
关于《治安调解协议书》,下列表述错误的是()。
德育普遍存在于一切教学之中。(2011年)
若级数收敛,发散,则()
最新回复
(
0
)