首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,—1,—3)T,α4=(0,0,3,3)T线性表出。 求向量组α1,α2,α3,α4的一个极大线性无关组,并将其余向量用该极大线性无关组
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,—1,—3)T,α4=(0,0,3,3)T线性表出。 求向量组α1,α2,α3,α4的一个极大线性无关组,并将其余向量用该极大线性无关组
admin
2019-03-23
55
问题
已知向量β=(α
1
,α
2
,α
3
,α
4
)
T
可以由α
1
=(1,0,0,1)
T
,α
2
=(1,1,0,0)
T
,α
3
=(0,2,—1,—3)
T
,α
4
=(0,0,3,3)
T
线性表出。
求向量组α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,并将其余向量用该极大线性无关组线性表出。
选项
答案
由初等变换矩阵知,向量组α
1
,α
2
,α
3
,α
4
的极大线性无关组是α
1
,α
2
,α
3
,且 α
4
= —6α
1
+6α
2
—3α
3
。 (2)
解析
转载请注明原文地址:https://www.kaotiyun.com/show/xHV4777K
0
考研数学二
相关试题推荐
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.(2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,annk;f(A)的对角线元素为f(
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βi都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
与α1=(1,-1,0,2)T,α2=(2,3,1,1)T,α3=(0,0,1,2)T都正交的单位向量是________.
n维向量组(Ⅰ)α1,α2,…,αr可以用n维向量组(Ⅱ)β1,β2,…,βs线性表示.
设A为n阶正交矩阵,α和β都是n维实向量,证明:(1)内积(α,β)=(Aα,Aβ).(2)长度‖Aα‖=‖α‖.
设α1,α2,…,αs是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性.①如果β,γ都可用α1,α2,…,αs线性表示,则β+γ也可用α1,α2,…,αs线性表示.②如果β,γ都不可用α1,α2,…,αs线性表示,则β+γ也
设α,β都是n维非零列向量,A=αβT.证明:A相似于对角矩阵βTα≠0.
证明:χ-χ2<ln(1+χ)<χ(χ>0).
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问t为多少时此质点的速度为v0/3?并求到此时刻该质点所经过的路程.
随机试题
A.洋地黄维持原量B.停用洋地黄并处理洋地黄中毒反应C.增加洋地黄用量D.减少洋地黄用量E.停用洋地黄频繁室性期前收缩呈二联律,应采取的措施是
王某系聋哑人,因涉嫌盗窃被人民检察院起诉至人民法院。对于本案,下列说法正确的有:()。
公路水运工程建设项目应当建立健全安全生产管理规章制度,下列属于安全生产管理规章制度内容的是()。
会计职业道德体系的框架结构与基本内容主要由()构成。
刘向子刘歆继承父业,完成了这一工作,并且写出了()一书,是我国第一部目录书。
日本脱口秀表演家金语楼曾获多项专利。有一种在打火机上装一个小抽屉代替烟灰缸的创意,在某次创意比赛中获得了大奖,备受推崇。比赛结束后,东京的一家打火机制造厂家将此创意进一步开发成产品推向市场,结果销路并不理想。以下哪项如果为真。能最好地解释上面的矛盾?
A、 B、 C、 D、 A
WhilewesterngovernmentsworryoverthethreatofEbola,amorepervasivebutfarlessharmful【C1】______isspreadingthroughth
针式打印机由打印头与______、色带机构及控制器四部分组成。
WhofirstlandedonAustralia?
最新回复
(
0
)