首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,1,一1)T,α2=(1,2,0)T是齐次线性方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是( )
已知α1=(1,1,一1)T,α2=(1,2,0)T是齐次线性方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是( )
admin
2019-01-19
82
问题
已知α
1
=(1,1,一1)
T
,α
2
=(1,2,0)
T
是齐次线性方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是( )
选项
A、(1,一1,3)
T
B、(2,1,一3)
T
。
C、(2,2,一5)
T
。
D、(2,一2,6)
T
。
答案
B
解析
如果A选项是Ax=0的解,则D选项必是Ax=0的解。因此A、D两项均不是Ax=0的解。
由于α
1
,α
2
是Ax=0的基础解系,所以Ax=0的任何一个解η均可由α
1
,α
2
线性表示,也即方程组x
1
α
1
+x
2
α
2
=η必有解,而
可见第二个方程组无解,即(2,2,一5)
T
不能由α
1
,α
2
线性表示,故选B。
转载请注明原文地址:https://www.kaotiyun.com/show/WmP4777K
0
考研数学三
相关试题推荐
已知α1=(1,1,0)T,α2=(1,3,一1)T,α3=(2,4,3)T,α4=(1,一1,5)T,A是3阶矩阵,满足Aα1=α2,Aα2=α3,Aα3=α4,求Aα4.
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(一1,一1,1,a)T,α3=(2,a,一3,一5)T,α4=(1,一1,a,5)T与齐次方程组Ax=0的基础解系等价,求Ax=0的
设线性方程组A3×4X=b有通解k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,其中k1,k2是任意常数,则下列向量中也是AX=b的解向量的是().
设两个线性方程组(I),(Ⅱ)为证明:方程组(I)有解的充分必要条件是方程组(Ⅱ)无解.
设A为三阶实对称矩阵,且存在可逆矩阵P=.(1)求a,b的值;(2)求正交变换x=Qy,化二次型f(x1,x2,x3)=XTA*x为标准形,其中A*为A的伴随矩阵;(3)若kE+A*合同于单位矩阵,求k的取值范围.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22—2x32+2x1x3(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为一12.(1)求a,b的值.(2)利用正交变换将二次型f化为标准形,并写出所用
二次型4x22一3x32+2ax1x2—4x1x3+8x2x3经正交变换化为标准形y12+6y22+by32,则a=__________.
二次型f(x1,x2,x3)=5x12+5x22+cx32一2x1x2—6x2x3+6x1x3的秩为2,求c及此二次型的规范形,并写出相应的变换.
已知二次型f(x1,x2,x3)=x12+4x22+4x32+2λx1x2—2x1x3+4x2x3.当λ满足什么条件时f(x1,x2,x3)正定?
随机试题
输精管结扎的常用部位
骨骼面成角拉开时,称为
生姜能降低半夏的毒性,其配伍关系属于()。
商业信用最典型的做法是( )。
参加期货从业资格考试,应当符合的条件不包括()。
反映一个国家或地区劳动力资源利用状况的最重要的经济指标是()。
【2015年】某公司计划投资建设一条新生产线,投资总额为60万元,预计新生产线投产后每年可为公司新增净利润4万元,生产线的年折旧额为6万元,则该投资的静态回收期为()年。
费用预算与执行的原则是()、总体控制、个案执行。
设随机变量X,Y,Z相互独立,都服从指数分布,参数分别为λ1,λ2,λ3(均为正),求P{X=min(X,Y,Z)}.
Iflifeexpectancywereamarathon,theUnitedStatesisfadingfromthepack.Althougheveryoneislivinglonger,theinhabitan
最新回复
(
0
)