首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=x12+4x22+4x32+2λx1x2—2x1x3+4x2x3. 当λ满足什么条件时f(x1,x2,x3)正定?
已知二次型f(x1,x2,x3)=x12+4x22+4x32+2λx1x2—2x1x3+4x2x3. 当λ满足什么条件时f(x1,x2,x3)正定?
admin
2017-10-21
86
问题
已知二次型f(x
1
,x
2
,x
3
)=x
1
2
+4x
2
2
+4x
3
2
+2λx
1
x
2
—2x
1
x
3
+4x
2
x
3
.
当λ满足什么条件时f(x
1
,x
2
,x
3
)正定?
选项
答案
用顺序主子式.此二次型的矩阵 [*] 它的顺序主子式的值依次为1,4一λ
2
,4(2一λ—λ
2
).于是,A应满足条件4一λ
2
>0,2一λ—λ
2
>0,解出λ∈(一2,1)时二次型正定.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/jOH4777K
0
考研数学三
相关试题推荐
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
设A是三阶实对称矩阵,r(A)=1,A2一3A=0,设(1,1,一1)T为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.
就a,b的不同取值,讨论方程组解的情况.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f"(x)>g"(x)(x>a).证明:当x>a时,f(x)>g(x).
设随机变量X的分布函数为F(x),则下列函数中可作为某随机变量的分布函数的是().
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22一2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程其中α=[1,1,一1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
用概率论方法证明:
证明:方阵A是正交矩阵,即AAT=E的充分必要条件是:(1)A的列向量组组成标准正交向量组,即或(2)A的行向量组组成标准正交向量组,即
随机试题
在法律另有规定或债权的标的属于他人的权利时,混同不发生债权消灭的效力。( )
2005年6月18日,该房地产抵押评估价值应为()万元。该公司2007年6月18日破产时偿还银行的拍卖款为()。
将运算放大器直接用于两信号的比较,如图7—5—10(a)所示,其中,ui1=-1V,ui2的波形由图7—5—10(b)给出,则输出电压uo等于()。[2010年真题]
预应力混凝土结构的混凝土强度等级不小于()。
某二级公路跨河大桥,左岸引桥结构为11跨20m预应力混凝土简支梁桥,柱式墩,1.5m桩基础。0#桥台至6#墩桩长12~14m,靠近主桥四跨桩长超过20m。由于该河段枯水期长,且左岸地质水文条件较好,故引桥桩基采用人工挖孔方法施工,挖孔桩施工照明、电器和起吊
资产数目增加到一定程度时,风险分散的效应就会逐渐减弱,但不会降到为0。()
违法嫌疑人要求听证的,应当在公安机关告知后()内提出申请。
战术训练有哪些方法?
设函数y(x)满足方程y”+2y’+ky=0,其中0<k<1.证明:反常积分∫0+∞y(x)dx收敛;
Peopleputclothesinit.Peoplestudythematschools.
最新回复
(
0
)