首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组A3×4X=b有通解 k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,其中k1,k2是任意常数,则下列向量中也是AX=b的解向量的是( ).
设线性方程组A3×4X=b有通解 k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,其中k1,k2是任意常数,则下列向量中也是AX=b的解向量的是( ).
admin
2017-07-26
162
问题
设线性方程组A
3×4
X=b有通解
k
1
[1,2,0,一2]
T
+k
2
[4,一1,一1,一1]
T
+[1,0,一1,1]
T
,其中k
1
,k
2
是任意常数,则下列向量中也是AX=b的解向量的是( ).
选项
A、α
1
=[1,2,0,一2]
T
B、α
2
=[6,1,一2,一2]
T
C、α
3
=[3,1,一2,4]
D、α
4
=[5,1,一1,一3]
T
答案
B
解析
由题设知,通解为
k
1
ξ
1
+k
2
ξ
2
+η=k
1
[1,2,0,一2]
T
+k
2
[—4,一1,一1,一1]
T
+[—1,0,一1,1—1
T
.
因α
1
=ξ
1
,α
4
=ξ
1
+ξ
2
均是对应齐次方程的解,故(A)、(D)不成立,
α
2
,α
3
是否是AX=B的解向量,则要考虑是否存在k
1
,k
2
,使得
α
2
=k
1
ξ
1
+k
2
ξ
2
+η 及α
3
=k
1
ξ
1
+k
2
ξ
2
+η
即 α
2
一η=k
1
ξ
1
+k
2
ξ
2
,α
3
一η=k
1
ξ
1
+k
2
ξ
2
是否有解,因
[ξ
1
,ξ
2
,α
2
一η,α
3
一η]=
,
知α
2
一η可由ξ
1
,ξ
2
表出,α
3
一η不能由ξ
1
,ξ
2
表出.故α
2
是AX=b的解向量.故选B.
转载请注明原文地址:https://www.kaotiyun.com/show/NyH4777K
0
考研数学三
相关试题推荐
设函数f(x)在[0,1]上具有二阶连续导数,且f(0)=f(1)=0,f(x)≠0(x∈(0,1)),证明:
求f(x,y,z)=2x+2y—z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
设离散型二维随机变量(X,Y)的取值为(xi,yi)(i,j=1,2),且试求:二维随机变量(X,Y)的联合概率分布;
[*][*]
设f(x)在[一δ,δ]有定义,且f(0)=f’(0)=0,f’’(0)=a>0,又收敛,则P的取值范围是
设函数f(x)=(ex-1)(e2x-2)…(enx-n),其中n为正整数,则fˊ(0)=().
设u=f(x2+y2,xz),z=z(x,y)由ex+ey=ez确定,其中f二阶连续可偏导,求
设y’=arctan(x一1)2,y(0)=0,求∫01y(x)dx.
电话公司有300台分机,每台分机有6%的时间处于与外线通话状态,设每台分机是否处于通话状态相互独立,用中心极限定理估计至少安装多少条外线才能保证每台分机使用外线不必等候的概率不低于0.95?
设数列极限函数f(x)=,则f(x)的定义域I和f(x)的连续区间J分别是()
随机试题
A.生成酮体B.氧化酮体C.分泌胆汁D.合成胆固醇脂肪酸在肝内分解氧化时可以
女,41岁。左下后牙区胀痛不适4周。体检见面部两侧基本对称,远中一瘘口,有少量乳白色物质溢出,临床诊断为角化囊性瘤。该患者的X线片表现不包括
棉制婴儿手套
根据产品用途的不同,个人贷款产品可以分为()。
下列不属于幼儿园教师工作职责的内容是()
在广播体操教学中,教师多采用背面示范授课。()
光伏发电的主要原理是半导体的光电效应,相比其他发电形式,具有很多优点,下列不是光伏发电优点的是:
某地级市A区居民刘女士未经规划部门批准,在居住的房屋南侧搭建了一间12.88平方米的房屋,2011年3月10日,经该市规划委认定,该处房屋属于违规建筑。3月16日,A区城市管理监察大队向刘女士下达了《限期拆除通知书》,要求刘女士在3月23日9点前自行拆除,
“自强计划”为清华大学自主选拔“新百年计划”三个组成部分之一,其主要面向长期学习、生活在农村地区、边远贫困地区或民族地区,自强不息、德才兼备的高中毕业生,主要向国家级贫困县的县级及以下中学选才。采用中学推荐的方式报名,每个符合推荐条件的中学至多可推荐1名学
InApril,BritishresearchersatUniversityCollegeLondonfoundthat,ratherthantherecommendedfive,sevendailyportionsof
最新回复
(
0
)