首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(一1,一1,1,a)T,α3=(2,a,一3,一5)T,α4=(1,一1,a,5)T与齐次方程组Ax=0的基础解系等价,求Ax=0的
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(一1,一1,1,a)T,α3=(2,a,一3,一5)T,α4=(1,一1,a,5)T与齐次方程组Ax=0的基础解系等价,求Ax=0的
admin
2017-07-26
61
问题
已知A是3×4矩阵,r(A)=1,若α
1
=(1,2,0,2)
T
,α
2
=(一1,一1,1,a)
T
,α
3
=(2,a,一3,一5)
T
,α
4
=(1,一1,a,5)
T
与齐次方程组Ax=0的基础解系等价,求Ax=0的
选项
答案
由于α
1
,α
2
,α
3
,α
4
与Ax=0的基础解系等价,故α
1
,α
2
,α
3
,α
4
必是Ax=0的解,因为A是3×4矩阵,且r(A)=1,所以Ax=0的基础解系有n一r(A)=4—1=3个解向量,因此向量组α
1
,α
2
,α
3
,α
4
的秩必为3,其极大线性无关组就是Ax=0的基础解系,于是 [*] 若a=一3,则α
1
,α
2
,α
3
,α
4
的极大线性无关组是α
1
,α
2
,α
3
,于是Ax=0的通解是 [*] 若a=1或a=4,则α
1
,α
2
,α
3
,α
4
的极大线性无关组是α
1
,α
2
,α
3
,于是Ax=0的通解是 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/kyH4777K
0
考研数学三
相关试题推荐
曲线在点(1,1,3)处的切线方程为_____.
设A,B是二随机事件;随机变量试证明随机变量X和Y不相关的充分必要条件是A与B相互独立.
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数,a,b满足条件0≤a≤b≤a+b≤c.
设f(t)(t≥0)为连续函数,则由下式确定的函数F称为f的拉普拉斯变换:其中F的定义域为所有使积分收敛的s的值的集合,试求出下列函数的拉普拉斯变换:(1)f(t)=1;(2)f(t)=el;(3)f(t)=t.
设幂级数的收敛半径分别为,则幂级数的收敛半径为().
设u=二阶连续可导,又,求f(x).
设f(x)是连续函数.(1)求初值问题的解,其中a>0;(2)若|f(x)|≤k,证明:当x≥0时,有|y(x)|≤(eax一1).
设,x∈(0,1],定义A(x)=∫0xf(t)dt,令试证:
设y=,求它的反函数x=φ(y)的二阶导数及φ’’(1).
设f(x)是连续函数.(1)求初值问题的解,其中a>0;(2)若|f(x)|≤k,证明:当x≥0时,有|y(x)|≤(eax-1).
随机试题
ToGA临床研究证实,曲妥珠单抗(赫赛汀)联合化疗可改善HER2阳性晚期胃癌患者的生存,患者联合用药的中位OS为
猝死指自然发生出乎意料的突然死亡。世界卫生组织规定发病后多长时间内死亡者为猝死
患者张某,肠梗阻,在急诊观察室留观,护士的护理工作不包括
在成组病例对照研究中,对OR值的描述哪个是正确的
与感染性心内膜炎有关的最常见的致病菌是
某公司2017年2月曾公开发行2亿元的公司债券,该公司2018年9月申请再次公开发行1亿元的公司债券。下列情形中,构成本次发行障碍的是()。
已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交A、B两点,F为C的焦点.若|FA|=2|FB|,则k=().
阅读下面资料,作答以下问题:成都市人事局拟用函行文给成都大学,了解在该校就读的成都籍毕业生情况。为什么?()
阅读以下文字。完成问题。节能减排是党中央、国务院作出的重大决定部署,是“十一五”时期的一项约束性指标,是一条不可逾越的红线。我们将进一步统一思想,认真贯彻落实党的十七大精神,牢固树立抓节能减排就是落实科学发展观、转变经济发展方式的理念,充分认识节
Geographyisthestudyoftherelationshipbetweenpeopleandtheland.Geographerscompareandcontrast(1)_____placesonthee
最新回复
(
0
)