首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)在点(0,0)处连续,且,其中a,b,c为常数. (Ⅰ)求f(0,0)的值. (Ⅱ)证明f(x,y)在点(0,0)处可微,并求出df(x,y)|(0,0). (Ⅲ)讨论f(x,Y)在点(0,0)处是否取极值,说明理由.
设f(x,y)在点(0,0)处连续,且,其中a,b,c为常数. (Ⅰ)求f(0,0)的值. (Ⅱ)证明f(x,y)在点(0,0)处可微,并求出df(x,y)|(0,0). (Ⅲ)讨论f(x,Y)在点(0,0)处是否取极值,说明理由.
admin
2015-05-07
99
问题
设f(x,y)在点(0,0)处连续,且
,其中a,b,c为常数.
(Ⅰ)求f(0,0)的值.
(Ⅱ)证明f(x,y)在点(0,0)处可微,并求出df(x,y)|
(0,0)
.
(Ⅲ)讨论f(x,Y)在点(0,0)处是否取极值,说明理由.
选项
答案
(Ⅰ)当(x,y)→(0,0)时ln(1+x
2
+y
2
)~x
2
+y
2
,由求极限中等价无穷小因子替换得 [*] 又由f(x,y)在点(0.0)处的连续性即得f(0.0)=[*]=a. (Ⅱ)再由极限与无穷小的关系可知 [*]=1+o(1)(o(1)为当(x,y)→(0,0)时的无穷小量)[*]f(x,y)-f(0,0)-bx-cy=x
2
+y
2
+(x
2
+y
2
)o(1)=o(ρ)(ρ=[*]→0), 即 f(x,y)-f(0,0)=bx+cy+o(ρ) (ρ→0). 由可微性概念[*] f(x,y)在点(0,0)处可微且df(x,y)|
(0,0)
=bdx+cdy. (Ⅲ)由df(x,y)|
(0,0)
=bdx+cdy[*] 于是当b,C不同时为零时f(x,y)在点(0,0)处不取极值. 当b=c=0时,由于 [*] 又由极限不等式性质[*]δ>0,当0<x
2
+y
2
<δ
2
时,[*]>0,即f(x,y)>f(0,0). 因此f(x,y)在点(0,0)处取极小值.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/UY54777K
0
考研数学一
相关试题推荐
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A能否相似于对角矩阵,说明理由.
下列矩阵中能相似于对角矩阵的是().
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
|A|是n阶行列式,其中有一行(列)元素全是1,证明:这个行列式的全部代数余子式的和等于该行列式的值.
设A为n阶可逆方阵,k为非零常数,则有().
设f(x,y)为连续函数,f(0,0)已知,则=_______.其中D={(x,y)|x2+y2≤t2}.
设z=z(x,y)是由方程x2y—z=ψ(z+y+z)所确定的函数,其中ψ可导,且ψ’≠一1,则=_______.
如图1-14-2所示,区域D是由曲线y=x3,y=一1,y=1及y轴围成的封闭图形,D1为D位于第一象限的图形,D2为D位于第三象限的图形,则以D为底,以z=x3+y为顶的曲顶柱体体积为().
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上点(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终飞向飞机,且速度大小为2v.导弹运行方程。
设A=,为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B求正交变换x=Qy将二次型f(x1,x2,x3)化为标准形
随机试题
A、耐用性B、定量限C、检测限D、精密度E、准确度以信噪比3:1确定的方法评价的效能指标为( )。
下列哪些情形应当数罪并罚?()
依据企业所得税相关规定,纳税人下列行为应视同销售确认所得税收入的有()。
《国家中长期教育改革和发展规划纲要(2010-2020年)》指出,到2020年,我国要基本实现教育现代化,基本形成(),进入人力资源强国行列。
某市规划建设的4个小区,分别位于直角梯形ABCD的4个顶点处(如图),AD=4千米,CD=BC=12千米。欲在CD上选一点S建幼儿园,使其与4个小区的直线距离之和最小,则S与C的距离是()。
对于党的十八届五中全会提出的全面建成小康社会新的目标要求,下列说法正确的是()。
Oneoftheworld’sfirstvideogames,Tetris,hasturnedthirtyyearsold,anditsbrandisanythingbutoldschool.Butwhat
_____boxerwasstrong,but_____hadagoodbuildandwaslightonhisfeet.
A、BecausemanyarchitectsstudiedwithWright.B、BecauseWrightstartedthepracticeof"land-scraping".C、BecauseWrightusede
GMOrganismsByfarthemostcommongeneticallymodified(GM)organismsarecropplants.Butthetechnologyhasnowbeenapp
最新回复
(
0
)