首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3线性无关,则( )线性无关:
设α1,α2,α3线性无关,则( )线性无关:
admin
2017-10-21
56
问题
设α
1
,α
2
,α
3
线性无关,则( )线性无关:
选项
A、α
1
+α
2
,α
2
+α
3
,α
3
一α
1
.
B、α
1
+α
2
,α
2
+α
3
,α
1
+2α
2
+α
3
.
C、α
1
+2α
2
,2α
2
+3α
3
,3α
3
+α
1
.
D、α
1
+α
2
+α
3
,2α
1
一3α
2
+22α
3
,3α
1
+5α
2
—5α
3
.
答案
C
解析
容易看出A中的向量组的第2个减去第1个等于第3个,所以相关.B组的前两个之和等于第3个,也相关.于是A和B都可排除.
现在只用判断C组是否相关(若相关,选D,若无关,选C.)
α
1
+2α
2
,2α
2
+3α
3
,3α
3
+α
1
对α
1
,α
2
,α
3
的表示矩阵为
C可逆,于是r(α
1
+2α
2
,2α
2
+3α
3
,3α
3
+α
1
)=r(C)=3,因而(C)组向量线性无关.
转载请注明原文地址:https://www.kaotiyun.com/show/UOH4777K
0
考研数学三
相关试题推荐
设(1)求PTCP;(2)证明:D一BA—1BT为正定矩阵.
用正交变换法化二次型f(x1+x2+x3)=x12+x22+x32—4x1x2—4x1x3—4x2x3为标准二次型.
设A是三阶实对称矩阵,r(A)=1,A2一3A=0,设(1,1,一1)T为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,AB≠0.证明:齐次线性方程组BY=0有零解,其中B=(β,β+α1,…,β+αs).
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn—1=0,b=α1+α1+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
设A是m×n矩阵,则下列命题正确的是().
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e—x一3e2x为特解,求该微分方程.
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
设二次型f(x1,x2,x3)=2(a1x1,a2x2,a3x3)2+(b1x1,b2x2,b3x3)2,记证明二次型f对应的矩阵为2ααT+ββT。
随机试题
在贸易条约与协定中,通常适用的法律待遇条款是
[*]
通过没收官僚资本,新中国建立了()
滴虫比白细胞
肝硬化患者出现下列情况。除哪项外均应怀疑癌变
下列关于各种变形缝,需从基础到上部结构全部断开设缝的是( )。
账簿组成的基本内容包括()。
在学生学习了“脊椎动物”内容后,某教师为了讲清楚鱼类、两栖类、爬行类、鸟类、哺乳类动物的特征,设计了以下板书。表中的每个空白就是一个问题,由学生回答,教师填写。问题:上述内容属于哪种类型的板书?
广告活动是指为了商业目的,由商品经营者或服务提供者承担费用,通过一定媒介或者一定形式,如通过报刊、电视、路牌、橱窗等,直接或间接地对自己推销的商品或者所提供的服务进行的公开的宣传活动。根据上述定义,下列各项属于广告活动的是()。
August7FrankPorterGreenvilleBranchOfficeManagerNelsonConstructionCompany6985GreenvilleAvenueDearMr.Porter,Iam
最新回复
(
0
)