首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs是n维向量,则下列命题中正确的是
设α1,α2,…,αs是n维向量,则下列命题中正确的是
admin
2018-11-22
75
问题
设α
1
,α
2
,…,α
s
是n维向量,则下列命题中正确的是
选项
A、如α
s
不能用α
1
,α
2
,…,α
s-1
线性表出,则α
1
,α
2
,…,α
s
线性无关.
B、如α
1
,α
2
,…,α
s
线性相关,α
s
不能由α
1
,α
2
,…,α
s-1
线性表出,则α
1
,α
2
,…,α
s-1
线性相关.
C、如α
1
,α
2
,…,α
s
中,任意s一1个向量都线性无关,则α
1
,α
2
,…,α
s
线性无关.
D、零向量0不能用α
1
,α
2
,…,α
s
线性表出.
答案
B
解析
(A),(C),(D)均错,仅(B)正确.
(A)中当α
s
不能用α
1
,α
2
,…,α
s-1
线性表出时,并不保证每一个向量α
i
(i=1,2,…,s-1)都不能用其余的向量线性表出.例如,α
1
=(1,0),α
2
=(2,0),α
3
=(0,3),虽α
3
不能用α
1
,α
2
线性表出,但
2α
1
一α
2
+0α
3
=0,α
1
,α
2
,α
3
是线性相关的.
(C)如α
1
,α
2
,…,α
s
线性无关,可知它的任何一个部分组均线性无关.但任一部分组线性无关并不能保证该向量组线性无关.例如
e
1
=(1,0,0,…,0),e
2
=(0,1,0,…,0),…,e
n
=(0,0,0,…,1),α=(1,1,1,…,1),
其中任意n个都是线性无关的,但这n+1个向量是线性相关的.
(D)在线性表出的定义中,对组合系数没有任何约束条件,因此,零向量可以用任何向量组线性表出,最多组合系数全取为0,即0=0α
1
+0α
2
+…+0α
s
.
其实,零向量0用α
1
,α
2
,…,α
s
表示时,如果组合系数可以不全为0,则表明α
1
,α
2
,…,α
s
是线性相关的,否则线性无关.
关于(B),由于α
1
,α
2
,…,α
s
线性相关,故存在不全为0的k
i
(i=1,2,…,s),使
k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0.
显然,k
s
=0(否则α
s
可由α
1
,…,α
s-1
线性表出),因此α
1
,α
2
,…,α
s-1
线性相关.
转载请注明原文地址:https://www.kaotiyun.com/show/TEM4777K
0
考研数学一
相关试题推荐
设随机变量X和Y相互独立且均服从正态分布N(μ,σ2)。若P{aX-bY<μ}=1/2,则a、b应满足的条件为()
设幂级数an(x-2)n在x=6处条件收敛,则幂级数(x-2)2n的收敛半径为()
若y=xex+x是微分方程y"-2y’+ay=bx+c的解,则()
设f(x)在[1,+∞)上有连续的二阶导数,f(1)=0,f’(1)=1,且二元函数z=(x2+y2)f(x2+y2)满足=0,求f(x)在[1,+∞)的最大值.
设L:+y2=1(x≥0,y≥0),过L上一点作切线.求切线与抛物线所围成面积的最小值.
设L为由y2=x+3及x=2围成的区域的边界,取逆时针方向,则等于().
求幂级数的收敛域,并求其和函数.
判别下列级数的敛散性(k>1,a>1):
(96年)求级数的和.
求导2.
随机试题
我国HCV的主要基因型是
A.手太阴、手太阳经穴B.手太阴、足太阴经穴C.手太阴、手阳明经穴D.手太阴、足太阳经穴E.手太阴、手少阳经穴
设备监理单位在设备监理活动中,具有组织各方协作的职能,同时也是合同管理的主要承担者,有协调各方的权益矛盾、维护合同双方权益的职能。为实现这些职能,监理方必须坚持( )。
中国顾客满意指数测评基本模型中,________是最终要得到的目标变量。
导游服务作为旅游产品的组成部分,已经成为旅游经营的一项重要内容,这体现了()。
《宪法修正案》第2条、第20条分别对《宪法》第10条第4款、第3款进行了修改。关于这些修改,下列说法正确的有()。
使用枪支的犯罪比其他类型的犯罪更容易导致命案。但是,大多数使用枪支的犯罪并没有导致命案。因此,没有必要在刑法中把非法使用枪支作为一种严重刑事犯罪,同其他刑事犯罪区分开来。上述论证中的逻辑漏洞,与以下哪项中出现的最为类似?
材料1 当前,全国疫情防控形势持续向好,生产生活秩序加快恢复。同时,境外疫情扩散蔓延,对世界经济产生不利影响,给我国经济发展带来新的挑战。当此之际,我们要牢记习近平总书记强调的“用全面、辩证、长远的眼光看待我国发展”,准确把握当前复杂经济形势,坚定我国
以下叙述中正确的是
One’sthoughtsmustbedirectedtothefuture,andAtothingsaboutwhichthereissomethingtobedone.Thisisnotalwayseasy
最新回复
(
0
)