首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0. 证明:对任意a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0. 证明:对任意a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
admin
2018-09-20
81
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.
证明:对任意a∈[0,1],有∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
选项
答案
令F(a)=∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(a)g(1),a∈[0,1],则 F’(a)=g(a)f’(a)-f’(a)g(1)=f’(a)[g(a)一g(1)]. 因为x∈[0,1]时,f’(x)≥0,g’(x)≥0,即函数f(x),g(x)在[0,1]上单调递增,又a≤1,所以 F’(a)=f’(a)[g(a)一g(1)]≤0, 即函数F(a)在[0,1]上单调递减,又 F(1)=∫
0
1
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(1)g(1) =∫
0
1
[g(x)f(x)]’dx一f(1)g(1)=g(1)f(1)一g(0)f(0)一f(1)g(1) =一f(0)g(0)=0, 所以F(a)≥F(1)=0,即 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(a)g(1)≥0, 即 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/QNW4777K
0
考研数学三
相关试题推荐
设随机变量X服从参数为2的指数分布,证明:Y=1一e一2X在区间(0,1)上服从均匀分布.
设随机变量X服从参数为1的指数分布,则随机变量Y一min(X,2)的分布函数().
设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:
设f’(x)在[0,1]上连续且|f’(x)|≤M.证明:|∫01f(x)dx一
设f(x)有界,且f’(x)连续,对任意的x∈(一∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设f(x)在(一a,a)(a>0)内连续,且f’(0)=2.证明:对0<x<a,存在0<0<1,使得∫0xf(t)dt+∫0xf(t)dt=x[f(θx)一f(一θx)];
证明:(1)设an>0,且{nan}有界,则级数an2收敛;(2)若n2an=k>0,则级数an收敛.
设{nan}收敛,且n(an一an一1)收敛,证明:级数an收敛.
随机试题
企业文化与企业战略的关系是()
60钴放射源的衰变遵从指数衰变定律,其半衰期是5.27年(每月衰减约1.1%),一个5000Ci的源两年后会衰减到
引起大肠梗阻的最常见的原因是
患儿3岁,右上第一乳切牙嵌入,牙冠舌倾。右上第二乳切牙冠折露髓,叩(+),松动Ⅰ度。右上第一乳切牙治疗措施
A.虫蛀、霉变、风化、潮解B.虫蛀、霉变、酸败、挥发C.水分、淀粉、油脂、色素D.温度、湿度、霉菌、贮存时间E.泛油、挥发、沉淀、粘连中药饮片贮存中常见的质量变异现象有()
某厂用自动包装机包装酱油。已知每袋酱油净重服从正态分布,标准规定每袋酱油净重1kg,标准差不超过0.02kg;某日开工后,随机抽取9袋,测得s=0.032kg。检验每袋酱油质量的均值是否符合标准规定的原假设H0为()。
项目绩效考核通常表现为________等三种情形。
当收入差距的衡量指标——基尼系数接近()时,收入便接近于绝对平等。
教师职前教育分为__和__。
Directions:Forthispart,youareallowed30minutestowriteashortessayentitledCanDonationChangePeople’sLifeinUnder
最新回复
(
0
)