首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)设[*5问a,b为何值时,β1,β2能同时由α1,α2,α3线性表出.若能表出时,写出其表出式; (Ⅱ)设问a,b为何值时,矩阵方程AX=B;有解,有解时,求出其全部解.
(I)设[*5问a,b为何值时,β1,β2能同时由α1,α2,α3线性表出.若能表出时,写出其表出式; (Ⅱ)设问a,b为何值时,矩阵方程AX=B;有解,有解时,求出其全部解.
admin
2014-09-22
109
问题
(I)设[*5问a,b为何值时,β
1
,β
2
能同时由α
1
,α
2
,α
3
线性表出.若能表出时,写出其表出式;
(Ⅱ)设
问a,b为何值时,矩阵方程AX=B;有解,有解时,求出其全部解.
选项
答案
(1)对增广矩阵[A|B]作初等行变换,得[*]①A≠3,b任意,β
1
,β
2
均可由α
1
,α
2
,α
3
线性表出,且表出法唯一.Aξ
1
=β
1
的解为x
1
=一3,x
2
=2,x
3
=0,即β
1
=一3α
1
+2α
2
.Aξ
2
=β
2
的解为[*]即[*]其中a≠3,b足任意常数.②a=3,b=1有无穷多解.β
1
,β
2
均可由α
1
,α
2
,α
3
线性表出且表出法无穷多.Aξ
1
=β
1
,有解k
1
[1, 2,1]
T
+[-2,0,1]
T
其中k
1
是任意常数.Aξ
2
=β
2
,有解是k
2
[1,一2,1]
T
+[1,0,0]
T
,其中k
2
是仟意常数. (Ⅱ)由(I)知。①当a≠3,b任意时,AX=B有唯一解,且[*] ②当a=3,b=1时,AX=B有无穷多解,且得[*]其中k
1
,k
2
是任意常数.
解析
(I)β
1
,β
2
可同时由α
1
,α
2
,α
3
线性表出,则a
1
x
1
+a
2
x
2
+a
3
x
3
=β
i
,i=1,2,方程都有解.
(Ⅱ)方程AX=B,将AX=B以列分块,设X=[ξ
1
,ξ
2
].B=[β
1
,β
2
]即A[ξ
1
,ξ
2
]=[β
1
,β
2
]
有解
;Aξ
1
=β
1
且Aξ
2
=β
2
有解.
转载请注明原文地址:https://www.kaotiyun.com/show/Pq54777K
0
考研数学一
相关试题推荐
=___________.
若函数f(x)在区间(a,b)内可导,x1和x2是区间(a,b)内任意两点,且x1<x2,则至少存在一点ε,使()。
证明:.
证明不等式:当x∈时,(x2+)cosx<2.
证明:ex+e-x≥2x2+2cosx,-∞<x<+∞。
讨论方程2x3-9x2+12x-a=0实根的情况。
设A为n阶正定矩阵,α1,α2,…,αn为n维非零列向量,且满足αiTA-1αj=0(i≠j;i,j=1,2,…,n).证明:向量组α1,α2,…,αn线性无关.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Ax≠0.证明:向量组β,β+α1,β+α22,…,β+αt线性无关.
设A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
随机试题
下列作家同属于“文学研究会”的是()
脾气下陷的特异症状是
关于全国人大代表和省、自治区人大代表的名额,按照农村每一代表所代表的人口数四倍于城市每一代表所代表的人口数的原则分配的规定,下列哪一说法是错误的?(2009年卷一第19题)
甲公司为一家电生产企业,主要生产A、B、C三种家电产品。甲公司20×8年度有关事项如下:(1)甲公司管理层于20×8年11月制定了一项业务重组计划。该业务重组计划的主要内容如下:从20×9年1月1日起关闭C产品生产线;从事C产品生产的员工共计25
如果某被试者的SCL-90测试结果是:躯体化2.8分、强迫0.9分、焦虑2.1分、人际关系0.4分、抑郁3.2分、敌对1.6分、惊恐0.4分、偏执0.3分、精神病性0.6分,那么该被试者的症状群特点的主要症状是()。
素质教育是促进个体全面发展,面向全体学生的教育。()
根据合同法规定,对于违反非金钱债务的,不能采用继续履行方式承担违约责任的情形是()。
设有表示学生选课的三张表,学生S(学号,姓名,性别,年龄,身份证号),课程C(课号,课名),选课SC(学号,课号,成绩),则表SC的关键字(键或码)为()。
Probablyoneofthemostrevolutionaryinnovationsinscienceduringthiscenturywastherecognitionofthedualityofmatter;【
Myvisittoyourcountrywasawonderful______.
最新回复
(
0
)