首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)设[*5问a,b为何值时,β1,β2能同时由α1,α2,α3线性表出.若能表出时,写出其表出式; (Ⅱ)设问a,b为何值时,矩阵方程AX=B;有解,有解时,求出其全部解.
(I)设[*5问a,b为何值时,β1,β2能同时由α1,α2,α3线性表出.若能表出时,写出其表出式; (Ⅱ)设问a,b为何值时,矩阵方程AX=B;有解,有解时,求出其全部解.
admin
2014-09-22
130
问题
(I)设[*5问a,b为何值时,β
1
,β
2
能同时由α
1
,α
2
,α
3
线性表出.若能表出时,写出其表出式;
(Ⅱ)设
问a,b为何值时,矩阵方程AX=B;有解,有解时,求出其全部解.
选项
答案
(1)对增广矩阵[A|B]作初等行变换,得[*]①A≠3,b任意,β
1
,β
2
均可由α
1
,α
2
,α
3
线性表出,且表出法唯一.Aξ
1
=β
1
的解为x
1
=一3,x
2
=2,x
3
=0,即β
1
=一3α
1
+2α
2
.Aξ
2
=β
2
的解为[*]即[*]其中a≠3,b足任意常数.②a=3,b=1有无穷多解.β
1
,β
2
均可由α
1
,α
2
,α
3
线性表出且表出法无穷多.Aξ
1
=β
1
,有解k
1
[1, 2,1]
T
+[-2,0,1]
T
其中k
1
是任意常数.Aξ
2
=β
2
,有解是k
2
[1,一2,1]
T
+[1,0,0]
T
,其中k
2
是仟意常数. (Ⅱ)由(I)知。①当a≠3,b任意时,AX=B有唯一解,且[*] ②当a=3,b=1时,AX=B有无穷多解,且得[*]其中k
1
,k
2
是任意常数.
解析
(I)β
1
,β
2
可同时由α
1
,α
2
,α
3
线性表出,则a
1
x
1
+a
2
x
2
+a
3
x
3
=β
i
,i=1,2,方程都有解.
(Ⅱ)方程AX=B,将AX=B以列分块,设X=[ξ
1
,ξ
2
].B=[β
1
,β
2
]即A[ξ
1
,ξ
2
]=[β
1
,β
2
]
有解
;Aξ
1
=β
1
且Aξ
2
=β
2
有解.
转载请注明原文地址:https://www.kaotiyun.com/show/Pq54777K
0
考研数学一
相关试题推荐
设f(x)为可导函数,证明:f(x)的任意相邻的两个零点之前必定有f(x)+f’(x)的零点。
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:存在x0∈(0,1),使得f(x0)=2-3x0.
设αi[ai1,ai2,…,ain]T(i=1,2,…,s;s<n)为n维列向量,且α1,α2,…,αs线性无关,已知β是线性方程组的非零解,判断向量组α1,α2,…,αs,β的线性相关性.
设A是3×3矩阵,a1,a2,a3是3维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求|A|.
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充要条件为().
n维向量组α1,α2,…,αs(3≤S≤n)线性无关的充要条件是().
向量组α1,α2,…,αs(s≥2)线性相关的充要条件是().
设n阶矩阵A的各行元素之和为零,且A的秩为n-1,则线性方程组Ax=0的通解为________.
设A为n阶正定矩阵,证明:|A+E|>1.
随机试题
有关改良牛鲍计数板的描述,错误的是:()
糖皮质激素的主要不良反应有哪些?
A、瞳孔不等大B、瞳孔扩大C、瞳孔缩小D、眼球球突出E、眼球震颤颅内疾患出现脑疝可见
试述危害公共安全罪的构成特征。
会计核算应按规定的会计处理方法进行,前后各期应当保持一致,不得随意变更,这是会计核算一贯性原则。()
公司的所有者权益又称股东权益,包括实收资本、资本公积和()。
生产企业物流系统化改造是指对生产企业现有的原材料及设备采购供应阶段(即采购物流)、生产阶段、销售配送阶段(即销售物流)进行规划和布局,达到准时化模式。()
根据《企业职工生育保险试行办法》,下列关于生育保险待遇的说法,正确的是()。
求极限ω=
在窗体上有一个命令按钮,其名称为Command1。要实现程序运行后,单击命令按钮,如果在输入对话框里分别输入12和4,编写如下事件过程:PrivateSubCommand1_Click()A=InputBox("被除数")B=InputBox("
最新回复
(
0
)