首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+26)T,β=(1,3,-3)T,试讨论当a,b为何值时, (Ⅰ)β不能由α1,α2,α3线性表示; (Ⅱ)β可由α1,α2,α3惟一地线性表示,并求出表
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+26)T,β=(1,3,-3)T,试讨论当a,b为何值时, (Ⅰ)β不能由α1,α2,α3线性表示; (Ⅱ)β可由α1,α2,α3惟一地线性表示,并求出表
admin
2016-06-30
85
问题
设α
1
=(1,2,0)
T
,α
2
=(1,a+2,-3a)
T
,α
3
=(-1,-b-2,a+26)
T
,β=(1,3,-3)
T
,试讨论当a,b为何值时,
(Ⅰ)β不能由α
1
,α
2
,α
3
线性表示;
(Ⅱ)β可由α
1
,α
2
,α
3
惟一地线性表示,并求出表示式;
(Ⅲ)β可由α
1
,α
2
,α
3
线性表示,但表示式不惟一,并求表示式.
选项
答案
设有一组数χ
1
,χ
2
,χ
3
,使得 χ
1
α
1
+χ
2
α
2
+χ
3
α
3
=β (*) 对方程组(*)的增广矩阵施行初等行变换: [*] (1)当a=0,b为任意常数时,有 [*] 可知r(A)≠r([*]),故方程组(*)无解,β不能由α
1
,α
2
,α
3
线性表示. (2)当a≠0,且a≠b时,r(A)=r([*])=3,方程组(*)有唯一解:[*],χ
3
=0.故此时β可由α
1
,α
2
,α
3
唯一地线性表示为:β=[*] (3)当a=b≠0时,对[*]施行初等行变换: [*] 可知r(A)=r([*])=2,故方程组(*)有无穷多解,通解为[*],χ
3
=c,其中c为任意常数.故此时β可由α
1
,α
2
,α
3
线性表示,但表示式不唯一,其表示式为β=[*]α
2
+cα
3
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/P9t4777K
0
考研数学二
相关试题推荐
设f(x)在[a,+∞)上连续,且f(x)存在.证明:f(x)在[a,+∞)上有界.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
曲线y=x5-4x+2的拐点是________。
证明:若p>1,则对于[0,1]内任意x,有≤xp+(1-x)p≤1
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a,试求切线方程和这个图形的面积。当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
讨论函数求出导函数f’(x)。
讨论在(0,0)点的连续性。
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f’"(ξ)=3.
设3阶方阵Aα(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2都是3维列向量,且|A|=3,|B|=4,则|5A-2B|=________.
随机试题
Thefogwassoheavythismorningthatdriverscouldhardly____________thethingsjusttenmetersawayfromthem.
这段文字对沙子龙进行了什么样的艺术描写?沙子龙为什么要在夜间关好了门,才熟习他的"五虎断魂枪"?
A、口渴多饮B、大渴喜冷饮C、但欲漱水不欲咽D、口渴而不多饮E、口渴欲饮,水入即吐痰饮内停,水津不能上承时口渴的表现是()
纵向水平杆(大横杆)的对接扣件应符合下列规定()。
为了保证国有资产不流失,须由国土资源管理部门向企业推荐土地估价机构对改制企业的土地使用权价格进行评估。()
依据《中华人民共和国防沙治沙法》,关于沙化土地封禁保护区的规定,下列说法正确的有()。
FCL--LCL货物交接的运输条款包括()。
经过30多年的不懈努力,深圳迅速从一个边陲小镇发展成为一个现代化大城市,综合经济实力跃居全国大中城市前列。这充分证明了()。
R1、R2是一个自治系统中采用RIP路由协议的两个相邻路由器,R1的路由表如表1所示,当R1收到R2发送的如表2所示的(V,D)报文后,R1更新的路由表项中距离值从上到下依次为0、4、4、3。那么,(1)、(2)、(3)、(4)可能的取值依次为
Thereareseveralpossiblerelationshipsbetweenlanguageandsociety.Oneiswhatsocialstructuremayeitherinfluenceordete
最新回复
(
0
)