首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列旋转体的体积V: (Ⅰ)由曲线x2+y2≤2x与y≥x确定的平面图形绕直线x=2旋转而成的旋转体; (Ⅱ)由曲线y=3-|x2-1|与x轴围成封闭图形绕直线y=3旋转而成的旋转体.
求下列旋转体的体积V: (Ⅰ)由曲线x2+y2≤2x与y≥x确定的平面图形绕直线x=2旋转而成的旋转体; (Ⅱ)由曲线y=3-|x2-1|与x轴围成封闭图形绕直线y=3旋转而成的旋转体.
admin
2018-06-27
147
问题
求下列旋转体的体积V:
(Ⅰ)由曲线x
2
+y
2
≤2x与y≥x确定的平面图形绕直线x=2旋转而成的旋转体;
(Ⅱ)由曲线y=3-|x
2
-1|与x轴围成封闭图形绕直线y=3旋转而成的旋转体.
选项
答案
(Ⅰ)对该平面图形,我们可以作垂直分割也可作水平分割. 作水平分割.该平面图形如图3.28.上半圆方程写成x=1-[*](0≤y≤1).任取y轴上[0,1]区间内的小区间[y,y+dy],相应的微元绕x=2旋转而成的立体体积为 dV={π[2-(1-[*])]
2
-π(2-y)
2
}dy. 于是 V=π∫
0
1
[2-(1-[*])]
2
dy-π∫
0
1
(2-y)
2
dy, =π∫
0
1
(2-y
2
+[*])dy-π∫
1
2
t
2
dt [*] (Ⅱ)曲线y=3-|x
2
-1|与x轴的交点是(-2,0),(2,0).曲线y=f(x)=3-|x
2
-1|与x轴围成的平面图形,如图3.29所示. [*] 显然作垂直分割方便.任取[x,x+dx][*][-2,2],相应的小竖条绕y=3旋转而成的立体体积为 dV=π[3
2
-(3-f(x))
2
]dx=π(9-|x
2
-1|
2
)dx, 于是V=π∫
-2
2
[9-(x
2
-1)
2
]dx =2π∫
0
2
[9-(x
4
-2x
2
+1)]dx [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/NYk4777K
0
考研数学二
相关试题推荐
设4维向量组α=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时α1,α2,α3,α4线性相关?当α1,α2,α3,α4性相关时,求其一个极大线性无关组,并将其余向量用该
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A的特征向量;
设函数f(x)在[a,+∞)内二阶可导且f’’(x)a,f’(b)>0,f’(b)
设u=f(2x+3y,z),其中f具有二阶连续偏导数,而z=z(x,y)是由方程=1确定并满足z(0,0)=1的函数,求结果用fi’(0,1),fij’’(0,1)表示(i,j=1,2)
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
设在点x=0处二阶导数存在,则其中的常数a,b,c分别是
设f(x)是以T为周期的连续函数(若下式中用到f’(x),则设f’(x)存在),则以下4个结论中不正确的是()
设A为可逆的实对称矩阵,则二次型XTAX与XTA-1X().
设f(t)连续并满足f(t)=cos2t+∫0tf(s)sinsds,求f(t)。
随机试题
Doyoumeanthisisthe______decisionyouhavemadeafterthinkingforhours?
开放式问卷法的优点是
既能息风止痉,又能祛风湿,止痹痛的药物是
A、百部B、款冬花C、紫菀D、天南星E、桑白皮治百日咳、肺痨咳嗽宜用的中药是
A.药品广告不得含有B.应当在医生指导下使用的治疗性药品广告C.非处方药广告D.乙类非处方药广告E.特殊管理药品()必须注明“按医生处方购买和使用”
对下列事项行政复议机关可进行调解的有:()
偶然所得,因为不是固定收入,所以不属于个人所得税的征收范围。()
建设工程临时用电,按照三相五线制实行________的规定,合理布置临时用电系统。()
Arecentparliamentaryreportblamesthegovernmentandthefoodindustryforthegrowthinobesity.TheDepartmentofTransport
Nothingsucceedsinbusinessbookslikethestudyofsuccess.Thecurrentbusiness-bookboomwaslaunchedin1982byTomPeters
最新回复
(
0
)