首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T, )如果齐次线性方程组Ax=0与BBx=0有非零公共解
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T, )如果齐次线性方程组Ax=0与BBx=0有非零公共解
admin
2014-02-05
94
问题
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η
1
=(1,3,0,2)
T
,η
2
=(1,2,一1,3)
T
,又知齐次方程组Bx=0的基础解系是β
1
=(1,1,2,1)
T
,β
2
=(0,一3,1,α)
T
,
)如果齐次线性方程组Ax=0与BBx=0有非零公共解,求a的值并求公共解.
选项
答案
设齐次线性方程组Ax=0与Bx=0的非零公共解为y,则y既可由η
1
,η
2
线性表出,也可由β
1
,β
2
线性表出,故可设y=x
1
η
1
+x
2
η
2
=一x
3
β
1
一x
4
β
2
,于是x
1
η
1
+x
2
η
2
+x
3
β
1
+x
4
β
2
=0.对(η
1
,η
2
,β
1
,β
2
)作初等行变换,有[*]y≠0[*]x
1
,x
2
,x
3
,x
4
不全为0[*]秩r(η
1
,η
2
,β
1
,β
2
)<4[*]a=0.当a=0时.解出x
4
=t,x
3
=一t,x
2
=一t,x
1
=2t.因此Ax=0与Bx=0的公共解为y=2tη
1
一tη
2
=t(1,4,1,1)
T
,其中t为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/bT34777K
0
考研数学二
相关试题推荐
[2011年]设A为三阶实对称矩阵,A的秩为2,且求矩阵A.
已知X=AX+B,其中求矩阵X.
(1995年)设f(x)为可导函数,且满足条件,则曲线y=f(x)在点(1,f(1))处的切线斜率为()
(2018年)设函数f(x)在[0,1]上二阶可导,且∫01f(x)dx=0,则()
(14年)设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的【】
(2006年)设函数y=f(x)具有二阶导数,且f’(x)>0,f’’(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则()
(1996年)设f(x)在区间[0,1]上可微,且满足条件,试证:存在ξ∈(0,1),使f(ξ)+ξf’(ξ)=0.
计算二重积分,其中D={(x,y)|x2≤y≤1}。
求解定积分
已知连续函数f(x)满足条件,求f(x).
随机试题
宣城自古就是文人墨客荟萃之地,素有“千载诗人地”之誉。()
采用两台离心泵串联操作,通常是为了增加()。
患者男,16岁。T12水平完全性脊髓损伤内固定术后20天,一直卧床,生命体征稳定。患者日后佩带普通的长腿支具,若想步行稳定、速度较慢则应进行
工程量清单是招标人根据施工图纸计算的工程量,提供给投标人作为投标报价的基础,结算拨付工程款时应以()为依据。
运到施工现场的材料、半成品或构配件等都应具有产品( )和技术说明书。对进口钢材的检验程度应该是( )。
容易导致公司控制权分散的融资方式是()。
一般情况下,认股权证的实际价值与理论价值的关系为()。
人类被试在确定判断信号的标准时,受到下列哪些因素的影响()
ManyforeignerswhohavenotvisitedBritaincallalltheinhabitantsEnglish,fortheyareusedtothinkingoftheBritishIsle
Sixyearsago,aMiamiwomanwalkingthroughthehallofanofficebuildingcasuallynoticedtwomenstandingtogether.Several
最新回复
(
0
)