首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,且α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
已知四阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,且α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
admin
2019-05-08
105
问题
已知四阶方阵A=[α
1
,α
2
,α
3
,α
4
],α
1
,α
2
,α
3
,α
4
均为四维列向量,其中α
2
,α
3
,α
4
线性无关,且α
1
=2α
2
-α
3
.如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组AX=β的通解.
选项
答案
解一 因α
2
,α
3
,α
4
线性无关及α
1
=2α
2
-α
3
=2α
2
-α
3
+0α
4
,故秩([α
1
,α
2
,α
3
,α
4
])=秩(A)=3.于是AX=0的一个基础解系只包含一个解向量,将AX=0及AX=β分别写成列向量组的形式,即 x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0, ① x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β. ② 今已知 α
1
—2α
2
+α
3
=α
1
—2α
2
+α
3
+0α
4
=0, ③ 将式③与式①比较知,齐次方程组①的一个解向量为α=[1,-2,1,0]
T
. 又将α
1
+α
2
+α
3
+α
4
=β与方程组②比较知,方程组②的一个特解为η=[1,1,1,1]
T
,故AX=β的通解为 kα+η=k[1,-2,1,0]
T
+[1,1,1,1,1] (k为任意常数). 解二 令X=[x
1
,x
2
,x
3
,x
4
]
T
,则由AX=[α
1
,α
2
,α
3
,α
4
][x
1
,x
2
,x
3
,x
4
]
T
=β得到 x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β=α
1
+α
2
+α
3
+α
4
. 将α
1
=2α
2
-α
3
代入上式整理后,得到 (2x
1
+x
2
-3)α
2
+(-x
1
+x
3
)α
3
+(x
4
-1)α
4
=0. 因α
2
,α
3
,α
4
线性无关,故 [*] 因[*]由基础解系的简便求法即得方程组④对应的齐次方程组的基础解系仅含一个解向量α=[1,-2,1,0]
T
,方程组④的一个特解为β=[0,3,0,1]
T
,故方程组④即原方程组的通解为 X=cα+β=c[1,-2,1,0]
T
+[0,3,0,1]
T
, c为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/MsJ4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
证明:当x>1时,.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
当a,b取何值时,方程组无解、有唯一解、有无数个解?在有无数个解时求其通解.
设an=,对任意的参数λ,讨论级数的敛散性,并证明你的结论.
设f(x)二阶连续可导且f(0)=f’(0)=0,f’’(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求.
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
随机试题
简述新民主主义社会的特点和性质。
(2009)Thepresidentdeclaredthewholecountryintoastateof______.
有关肺炎型流感的临床表现,叙述不正确的是()
某水库平均水深5m,水面面积50km。,其水域规模为()。
0~2岁的儿童在游戏中,以肌肉活动为主,主要特征是重复、操作和自我模仿。儿童喜欢得到感官刺激,儿童重复自己的行为的目的是获得乐趣,表现自己的能力。这是()。
玲玲跳舞时,既能使自己的动作与音乐合拍,又能与同伴保持一致,还能配上适当的表情,这属于()
(2012年河北)日前我国大多数供水企业的水质检测欠账太多,且行业管理缺位严重,供水检测基本是工水企业自检自报,在水企业由于设备改造而造成资金紧张的背景下,检测成本很可能首先被砍掉。上述文字主要讲述了()。
诉讼时效的中止[湘潭大学2016年研;中财2014年研;东财2014年研]
Lookatthelistbelow.Itshowsanumberofbusinesstrainingcourses.Forquestions6-10,decidewhichtrainingcourse(A-H)ea
FrenchDefenseMinisterMicheleAlliot-Mariesayshergovernmentis【B1】______tohelptrainIraq’spoliceandmilitarybutrules
最新回复
(
0
)