首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设x∈(0,1),证明: (1)(1+x)ln2(1+x)<x2; (2)
设x∈(0,1),证明: (1)(1+x)ln2(1+x)<x2; (2)
admin
2016-01-11
61
问题
设x∈(0,1),证明:
(1)(1+x)ln
2
(1+x)<x
2
;
(2)
选项
答案
(1)令f(x)=(1+x)ln
2
(1+x)一x
2
,则f(0)=0. f’(x)=ln
2
(1+x)+2ln(1+x)一2x,f’(0)=0. [*] 当x>0时,ln(1+x)<x,故f”(x)<0,f’(x)单调减少;f’(x)<f’(0)=0,故f(x)单调减少,从而有f(x)<f(0)=0,即 (1+x)ln
2
(1+x)<x
2
. [*] 由(1)知g’(x)<0,x∈(0,1),故g(x)在(0,1)内单调减少. [*] 故当x∈(0,1)时,有 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Ml34777K
0
考研数学二
相关试题推荐
已知连续函数f(x)满足条件,求f(x).
设3阶实对称矩阵A满足A2=2A,已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为λy22+λy32(λ≠0),其中Q=(b>0,c>0).求一个可逆线性变换x=Pz化f为规范形.
设不恒为零的函数f(x)在[0,1]上有二阶连续导数,且f(0)=f(1)=0.记M={|f(x)|)}.证明:∫01[f(x)+x(1-x)f”(x)]dx=0.
设A是3阶方阵,λ1=1,λ2=-2,λ3=-1为A的特征值,对应的特征向量依次为a1,a2,a3,P=(3a2,2a3,-a1),则P-1(A*+E)P=()
设随机变量X与Y相互独立,X~N(0,σ2)(σ>0).且Y的分布律为P{Y=-1}=P{Y=1}=1/2,记Z=XY.设Z1,Z2,…,Zn为来自总体Z的简单随机样本,求σ2的最大似然估计量
设某容器的形状是由曲线x=g(y)在x轴上方部分绕y轴旋转而成的立体,按2tcm3/s的速率往里倒水,能够使水平面上升速度恒为cm/s,求曲线x=g(y)的函数表达式?
设总体X~N(μ,8),μ未知,X1,X2,…,X36是取自X的一个简单随机样本,如果以区间作为μ的置信区间,求置信度
设函数f(x,y)在点(0,0)处连续,且(1)求,并讨论它们在点(0,0)处是否可微,若可微求出df(x,y)|(0,0);(2)证明:f(x,y)在点(0,0)处取得极小值.
设生产某种产品必须投入两种要素x1和x2分别为两要素的投入量,Q为产出量,若生产函数为Q=2x1αx2β,其中α,β为正常数,且α+β=1,假设两种要素的价格分别为p1和p2,试问:当产量为12时,两要素各投入多少可以使得投入总费用最小?
随机试题
Manypost-80scouplesarecomplainingthatgoingtothemovies,shoppingorattendingpartieshavebecomeimpossiblesincetheir
精神疾病中自杀最多的疾病是
某山区于20世纪60年代,陆续出现不少骨骼变形以致丧失劳动能力的人,后经上级派员进行调查,发现这些病人除肢体骨骼变形外,还有明显的黑褐色斑牙,初步诊断为氟骨症,但水及土壤氟含量不高。在这种情况下,最应进一步检测的项目是
专业监理工程师是指由()授权,负责实施某一专业或某一岗位的监理工作人员。
下列荷载中,按时间的变异分类,属于可变作用的有()。
下列属于调度制度与方法的是()。
雾月政变
【S1】【S8】
德、日、意法西斯挑起的世界大战的罪恶罄竹难书。1937年12月,日军攻占南京后进行大规模屠杀、强奸、纵火、抢劫等战争罪行和反人类罪行,导致30万中国平民和战俘被杀害,南京城被毁三分之一,财产损失不计其数。在欧洲,德国法西斯对犹太人采取种族灭绝政策,杀害的欧
NewGraduationMath=SuccessforCommunityCollegesTheconceptofcommunitycollegesintheUnitedStatesdevelopedinthe
最新回复
(
0
)