首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(x)由方程e-y+x(y-x)=1+x确定,则曲线y=y(x)在(0,y(0))处的切线方程为________.
设y=y(x)由方程e-y+x(y-x)=1+x确定,则曲线y=y(x)在(0,y(0))处的切线方程为________.
admin
2022-04-27
82
问题
设y=y(x)由方程e
-y
+x(y-x)=1+x确定,则曲线y=y(x)在(0,y(0))处的切线方程为________.
选项
答案
y=-x.
解析
已知方程两边同时对x求导,得
-e
-y
·y’+y-x+x(y’-1)=1.
当x=0时,由已知方程,得y=0.将x=0,y=0代入上式,得y’(0)=-1.故切线方程为y=-x.
转载请注明原文地址:https://www.kaotiyun.com/show/gLR4777K
0
考研数学三
相关试题推荐
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2—a3,向量b—a1+a2+a3+a4,求方程组Ax=b的通解。
设x3一3xy+y3=3确定隐函数y=y(x),求y=y(x)的极值.
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于60000元的概率γ
(1)叙述并证明一元函数微分学中的罗尔定理;(2)叙述并证明一元函数微分学中的拉格朗日中值定理.
设f(x),g(x)均为[0,T]上的连续可微函数,且f(0)=0,证明:(Ⅰ)∫0Tf(x)g(x)dx=∫0Tf’(t)[∫tTg(x)dx]dx;(Ⅱ)∫0Tf(c)dt=∫0Tf’(t)(T一t)dt.
设四阶实方阵A满足条件=0,且IAl=9.则A*的一个特征值为_____,|A|2A-1的一个特征值为_____.
设随机变量(X,Y)~N(0,0;1,4;0).(Ⅰ)若X+Y与X+aY相互独立,求a的值,并求Z=X+aY的概率密度f(z);(Ⅱ)计算D(X2一2Y2).
设,B=A-1,则B的伴随矩阵B*的所有元素之和等于________.
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|.证明:|f(x)dx-(b-a)f(a)|≤(b-a)2.
随机试题
患者,男,32岁,发现血压高1年,最高达到170/100mmHg,口服硝苯地平片治疗,近半年来出现头晕,发作性全身乏力,手足发麻,口渴,夜尿增多,查尿RBC(-),尿蛋白)(±),尿比重1.010,血钾3.01mmol/L,最可能的诊断是()
男性,35岁。右上第一磨牙牙髓治疗后劈裂,拔牙过程中牙冠碎裂至龈下,牙根与周围骨质粘连。如果确定腭根已入上颌窦,经去除牙槽间隔后扩大牙槽窝将其冲出,此时上颌窦底黏膜破裂口约7mm,此时应
A.胆汁B.胆固醇C.胆绿素D.血红素E.胆素在体内可转变生成胆色素的原料是
甲有一辆汽车,赠与其友人乙,未附任何条件。乙接受赠与后,非常高兴,开着汽车沿路兜风。但在行使过程中,因汽车故障致该车与另一车相撞,损失6万元。乙要求甲赔偿损失,甲拒绝赔偿。后经查明,该汽车确有故障,但甲因事务繁忙,忘记告诉乙此故障。试问甲是否应当承担乙的损
我国监理工程师职业道德守则中包括()。
下列不属于人身保险的是()。
地球围绕地轴旋转,其倾斜角度为23.5度。受北美、欧洲和亚洲的大量冰原影响,地球北极点以每年大约10厘米的速度向西经79度方向移动。由此得出()。
根据文意,对“桥是不会动的”理解正确的一项是______。下列对本文中心的归纳,正确的一项是______。
Beforethe20thcenturythehorseprovideddaytodaytransportationintheUnitedStates.Trainswereusedonlyforlong-distan
AnothermilestoneonthejourneytowardsdigitalcashwaspassedonNovember13th.Thatdatemarkedtheemergencefrombeta-test
最新回复
(
0
)