首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2. (1)求A的特征值和特征向量; (2)求可逆矩阵P,使得P-1AP=A.
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2. (1)求A的特征值和特征向量; (2)求可逆矩阵P,使得P-1AP=A.
admin
2018-09-20
72
问题
设A=E+αβ
T
,其中α=[a
1
,a
2
,…,a
n
]
T
≠0,β=[b
1
,b
2
,…,b
n
]
T
≠0,且α
T
β=2.
(1)求A的特征值和特征向量;
(2)求可逆矩阵P,使得P
-1
AP=A.
选项
答案
(1)设 (E+αβ
T
)ξ=λξ. ① ①式两端左边乘β
T
得β
T
(E+αβ
T
)ξ=(β
T
+β
T
αβ
T
)ξ=(1+β
T
α)β
T
ξ=λβ
T
ξ. 若β
T
ξ≠0,则λ=1+β
T
α=3;若β
T
ξ=0,则由①式,λ=1. 当λ=1时,(E-A)X=一αβ
T
X=[*][b
1
,b
2
,…,b
n
]X=0,即[b
1
,b
2
,…,b
n
]X=0,因α
T
β=2, 故α≠0,β≠0,设b
1
≠0,则 ξ
1
=[b
2
,一b
1
,0,…,0]
T
,ξ
2
=[b
3
,0,一b
1
,…,0]
T
,…,ξ
n-1
=[b
n
,0,…,0,一b
1
]
T
,即A的对应于特征值1的特征向量为k
1
ξ+k
2
ξ
2
+…+k
n-1
ξ
n-1
,k
1
,k
2
,…,k
n-1
为不全为零的常数; 当λ=3时,(3E-A)X=(2E一αβ
T
)X=0,ξ
n
=α=[a
1
,a
2
,…,a
n
]
T
,即A的对应于特征值3的特征向量为k
n
ξ
n
,k
n
是不为零的常数. (2)由(1)可取可逆矩阵P=[ξ
1
,ξ
2
,…,ξ
n-1
,ξ
n
]=[*] 故P
-1
AP=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/MRW4777K
0
考研数学三
相关试题推荐
设A,B均是n阶矩阵,证明AB与BA有相同的特征值.
设矩阵A=的特征值有重根,试求正交矩阵Q,使QTAQ为对角形.
下列矩阵中不能相似对角化的是
设函数z=(1+ey)cosx-yey,证明:函数z有无穷多个极大值点,而无极小值点.
已知二维随机变量(X,Y)的概率密度为(Ⅰ)求(U,V)的概率分布;(Ⅱ)求U和V的相关系数ρ.
设A=其中ai≠aj(i≠j,i,j=1,2,…,n),则线性方程组ATx=B的解是______.
设齐次线性方程组只有零解,则a满足的条件是______.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2…+(n一1)αn一1=0,b=α1+α2+…+αn.证明方程组AX=b有无穷多个解;
随机试题
缺氧
某男,29岁。脘闷不舒,纳呆恶心,时吐痰涎,头晕目眩,苔腻,脉滑。辨证为
下列建设项目信息中,属于经济类信息的是()。
VaR值的大小与未来一定的()密切相关。
审计报告应具备哪些基本要素?
语言领域教学活动环境创设的要求不包括()。
在西方国家中,()的教育技术产生最早,发展脉络清晰完整,在世界上影响也最大。
社会组织(安徽大学2018年研;南开大学2015年研;中山大学2012年研;华东理工2011年研)
以下叙述中正确的是
A、Agovernmentdepartment.B、Astandardunitformeasuringweight.C、Thevalueofpreciousmetals.D、Thehumidweather.B女士开头就告诉
最新回复
(
0
)