首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B均是n阶矩阵,证明AB与BA有相同的特征值.
设A,B均是n阶矩阵,证明AB与BA有相同的特征值.
admin
2016-10-20
53
问题
设A,B均是n阶矩阵,证明AB与BA有相同的特征值.
选项
答案
设λ
0
是AB的非零特征值,α
0
是AB对应于λ
0
的特征向量,即 (AB)α
0
=λ
0
α
0
(α
0
≠0). 用B左乘上式,得BA(Bα
0
)=λ
0
Bα
0
. 下面需证Bα
0
≠0(这样Bα
0
就是矩阵BA对应于λ
0
的特征向量). (反证法) 如Bα
0
=0,那么(AB)α
0
=A(Bα
0
)=0,这与(AB)α
0
=λ
0
α
0
≠0相矛盾. 所以,λ
0
是BA的特征值. 如λ
0
=0是AB的特征值,则因 |0E-BA|=|-BA|=(-1)
n
| B|.|A|=(-1)
n
|A|.|B|=|0E-AB|,所以,λ
0
=0也是BA的特征值. 同样可证BA的特征值必是AB的特征值,所以AB与BA特征值相同.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/CYT4777K
0
考研数学三
相关试题推荐
设A是n×m矩阵,B是m×n矩阵,其中n
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
试求下列微分方程在指定形式下的解:(1)y〞+3yˊ+2y=0,形如y=erx的解;(2)x2y〞+6xyˊ+4y=0,形如y=xλ的解.
已知级数,则:(1)写出级数的第五项和第九项u5,u9;(2)计算出部分和S3,S10;(3)写出前几项部分和Sn的表达式;(4)用级数收敛的定义验证该级数收敛,并求和.
设生产某种产品必须投入两种要素,x1和x2分别为两要素的投入量,Q为产出量,若生产函数为Q=2x1αx2β,其中α,β为正常数,且α+β=1.假设两种要素的价格分别为ρ1和ρ2,试问:当产出量为12时,两要素各投入多少可以使得投入总费用最小?
设X1,X2,…,Xm为来自二项分布总体B(n,p)的简单随机样本,X和S2分别为样本均值和样本方差.记统计量T=X-S2,则ET=___________.
随机试题
在下列哪种情况下医学家长主义仍然是有效的,有时甚至是唯一有效的模式
区别轻症肺炎与重症肺炎的重要依据是
建设工程发生质量事故,有关单位应当在24小时内向当地建设行政主管部门报告。()
在下列选项中,属于我国法定的证据种类的有()。
从域名www.sina.com.cn可以看出,这个站点是中国的一个()。
下列有关资产减值的表述中,正确的有()。
测定泡菜样品中亚硝酸盐的含量时,氢氧化铝乳液的作用是()
哪一年进山口总额突破20亿元?( )。1974年至1990年的进口年增长额大约是( )。
下面是20世纪二三十年代中国共产党内关于革命道路问题的几组材料:材料1①乡村是统治阶级的四肢,城市才是他们的头脑与心腹,单只斩断了他的四肢,而没有斩断他的头脑,炸裂他的心腹,还不能制他的最后的死命。——摘自李立三:《新的革命高潮前面的诸问题》(193
【】权限允许修改数据,但不允许删除数据。
最新回复
(
0
)